25 research outputs found

    Exploring the length scales, timescales and chemistry of challenging materials (Part 2).

    Get PDF
    This themed issue explores the different length and timescales that determine the physics and chemistry of a variety of key of materials, explored from the perspective of a wide range of disciplines, including physics, chemistry materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with this second set of contributions exploring hybrid organic materials, catalysis low-dimensional and graphitic materials, biological materials and naturally occurring, super-hard material as well as dynamic high pressure and new developments in imaging techniques pressure. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'

    Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS2@TiO2 photoelectrode

    Get PDF
    Solar redox flow batteries constitute an emerging technology that provides a smart alternative for the capture and storage of discontinuous solar energy through the photo-generation of the discharged redox species employed in traditional redox flow batteries. Here, we show that a MoS2-decorated TiO2 (MoS2@TiO2) photoelectrode can successfully harvest light to be stored in a solar redox flow battery using vanadium ions as redox active species in both the catholyte and anolyte, and without the use of any bias. The MoS2@TiO2 photoelectrode achieved an average photocurrent density of ∌0.4 mA cm−2versus 0.08 mA cm−2 for bare TiO2, when tested for the oxidation of V4+ to V5+, attributed to a more efficient light harvesting and charge separation for the MoS2@TiO2 relative to TiO2. The designed solar redox flow cell exhibited an optimal overall solar-to-output energy conversion efficiency (SOEE) of ∌4.78%, which outperforms previously reported solar redox flow batteries. This work demonstrates the potential of the MoS2@TiO2 photoelectrode to efficiently convert solar energy into chemical energy in a solar redox flow battery, and it also validates the great potential of this technology to increase reliability in renewable energies

    A comprehensive study on physics-based simulation combined multi-objective optimization of capacity decay and voltage loss of Vanadium redox flow battery

    Get PDF
    This paper proposes physics-based simulation combined multi-objective optimization approach for reduction of both capacity decay and voltage loss of Vanadium redox flow battery. In this approach, firstly, a physics-based-electrochemical model for a single-cell VRFB is developed based on the dynamic plug flow reactor model and is used to obtain capacity decay and voltage loss under various conditions. Simulation studies were then conducted to investigate the effects of electrolyte flow rate and electrode fiber diameter on the VRFB performance. The capacity decay in VRFB relies mainly on the vanadium ions’ variation between two half-cells. The variation in the long-term cycle is fundamentally due to the electrolyte transfer across the membrane. The lower electrolyte flow rate, as well as electrode fiber diameter, can reduce the capacity decay as the electrolyte's velocity across the membrane decreases. However, the lower electrolyte flow rate and electrode fiber diameter increase the voltage loss considering open circuit voltage loss, activation overpotential, and concentration overpotential. Finally, a novel optimization framework combined with simulation and the meta-heuristic algorithm is introduced to reduce both capacity decay and voltage loss in VRFB simultaneously. The proposed multi-objective method shows a significant reduction of both capacity decay and voltage loss

    Recent Advances in Ultralow-Pt-Loading Electrocatalysts for the Efficient Hydrogen Evolution.

    Get PDF
    Hydrogen production from water electrolysis provides a green and sustainable route. Platinum (Pt)-based materials have been regarded as efficient electrocatalysts for the hydrogen evolution reaction (HER). However, the large-scale commercialization of Pt-based catalysts suffers from the high cost. Therefore, ultralow-Pt-loading electrocatalysts, which can reach the balance of low cost and high HER performance, have attracted much attention. In this review, representative promising synthetic strategies, including wet chemistry, annealing, electrochemistry, photochemistry, and atomic layer deposition are summarized. Further, the interaction between different electrocatalyst components (transition metals and their derivatives) and Pt is discussed. Notably, this interaction can effectively accelerate the kinetics of the HER, enhancing the catalytic activity. At last, current challenges and future perspectives are briefly discussed

    Monitoring Hydrogen Evolution Reaction Intermediates of Transition Metal Dichalcogenides via Operando Raman Spectroscopy

    Get PDF
    © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A deeper understanding of the water-splitting hydrogen evolution reaction (HER) mechanism during photocatalytic processes is crucial for the rational design of efficient photocatalysts. In particular, the HER mechanism promoted by multielement hybrid structures remains extremely challenging and elusive. Herein, an in situ photoelectrochemical/Raman measurement system is employed to monitor the HER mechanism of hybrid nanostructures under realistic working conditions via operando Raman spectra and linear-sweep voltammetry curves. As a proof of concept, tunable composition transition metal dichalcogenides MoS2xSe2(1−x) nanosheets are used as a model photocatalyst to unveil the corresponding photocatalytic mechanism. The spectroscopic studies reveal that hydrogen atoms can be adsorbed to active sulfur and selenium atoms via intermediate species formed during the photocatalytic process. More importantly, the studies demonstrate that an exponential relationship exists between the number of reactive electrons and the Raman intensity of intermediate species, which can serve as a guideline to directly evaluate the HER performance in photocatalysts by comparing the Raman intensities of the intermediate species. As a simple, intuitive, and general analytical method, the designed operando Raman measurement approach provides a new tool for elucidating catalytic reaction mechanisms in a realistic and complex environment; and strategically improving H2 production performance of multielement photocatalysts

    Heat Diffusion-Induced Gradient Energy Level in Multishell Bisulfides for Highly Efficient Photocatalytic Hydrogen Production

    Get PDF
    © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Insufficient light absorption and low carrier separation/transfer efficiency constitute two key issues that hinder the development of efficient photocatalytic hydrogen production. Here, multishell ZnS/CoS2 bisulfide microspheres with gradient distribution of Zn based on the heat diffusion theory are designed. The Zn distribution can be adjusted by regulating the heating rate and manipulating the diffusion coefficients of the different elements conforming the multishell photocatalyst. Because of the unique structure, a gradient energy level is created from the core to the exterior of the multishell microspheres, which effectively facilitates the exciton separation and electron transfer. In addition, stronger light absorption and larger specific surface area have been achieved in the multishell ZnS/CoS2 photocatalysts. As a result, the multishell ZnS/CoS2 microspheres with gradient distribution of Zn exhibit a remarkable hydrogen production rate of 8001 ”mol g−1 h−1, which is 3.5 times higher than that of the normal multishell ZnS/CoS2 particles with well-distributed Zn and 11.3 times higher than that of the mixed nonshell ZnS and CoS2 particles. This work demonstrates for the first time that controlling the diffusion rate of the different elements in the semiconductor is an effective route to simultaneously regulate morphology and structure to design highly efficient photocatalysts
    corecore