321 research outputs found

    Thermal stability of a laser-clad NiCrBSi coating hardened by frictional finishing

    Full text link
    Frictional treatment decreases surface roughness of a NiCrBSi laser coating and increases its microhardness and abrasive wear resistance. Even after softening annealing at 900 Β°C, the coating subjected to frictional treatment preserves its advantage in hardness and wear resistance over the original clad coating. Annealing at 1000 Β°C after frictional treatment ensures less effective growth of the hardness and wear resistance of the coating as compared to annealing of the undeformed coating due to the limited precipitation of large Cr23C6 carbides on the deformed surface, which form a wear-resistant framework. Β© 2017 Author(s).Russian Foundation for Basic Research,Β RFBR: 16-38-00452-mol-a01201375904108692015Federal Agency for Scientific Organizations: 01201463331Federal Agency for Scientific OrganizationsUral Branch, Russian Academy of Sciences,Β UB RAS: 15-9-12-45The study was financially supported by the Russian Foundation for Basic Research (RFBR), grant No. 16-38-00452-mol-a, by the Foundation for Assistance to Small Innovative Enterprises (FASIE), project UMNIK No. 108692015; the work was done within the Complex Program of UB RAS, project No. 15-9-12-45, within the state order for IES UB RAS, No. 01201375904 and within the state order of The Federal Agency for Scientific Organizations (FASO Russia) on the subject β€œStructure”, No. 01201463331. The experimental research was done on the equipment installed at the Plastometriya Collective Use Center of IES UB RAS

    METHODOLOGICAL APPROACHES TO EVALUATING BEERΒ AND NON-ALCOHOLIC PRODUCTS SHELF LIFE

    Get PDF
    The article discusses the relevance of developing methodological approaches to the beer and soft drinks accelerated aging method in the market. The controlled indicators selection principles, mainly affecting the quality of the finished product, and the basic equation describing the dependence of changes in indicators on the main temperature factor are given. Studies of the influence of various physical factors (temperatures in the range of 50–60Β Β°C, UV-radiation), both individually and jointly, on the physicochemical and organoleptic characteristics of packaged water for various experimental versions did not show statistically significant changes in the normalized parameters of the basic salt and microelement composition investigated water during storage. The optimal mode of accelerated Β«agingΒ» of packaged water at an elevated temperature (upΒ to 60Β Β°C) and UV-radiation was established. In the case of soft drinks, thermostating was used when changing the temperature regimes (heat 50 Β± 2Β Β°C / cold 6 Β± 2Β Β°C) at an exposure time of 30 days, which made it possible to observe a decrease in taste and aroma compared with the control, as well as a decrease in sweetness and the appearance of a slight plastic taste for non-carbonated drink. The influence a temperature regime change on brewing products, which cannot be estimated using the existing method due to the high turbidity, is shown.The article discusses the relevance of developing methodological approaches to the beer and soft drinks accelerated aging method in the market. The controlled indicators selection principles, mainly affecting the quality of the finished product, and the basic equation describing the dependence of changes in indicators on the main temperature factor are given. Studies of the influence of various physical factors (temperatures in the range of 50–60 Β°C, UV-radiation), both individually and jointly, on the physicochemical and organoleptic characteristics of packaged water for various experimental versions did not show statistically significant changes in the normalized parameters of the basic salt and microelement composition investigated water during storage. The optimal mode of accelerated Β«agingΒ» of packaged water at an elevated temperature (up to 60 Β°C) and UV-radiation was established. In the case of soft drinks, thermostating was used when changing the temperature regimes (heat 50 Β± 2 Β°C / cold 6 Β± 2 Β°C) at an exposure time of 30 days, which made it possible to observe a decrease in taste and aroma compared with the control, as well as a decrease in sweetness and the appearance of a slight plastic taste for non-carbonated drink. The influence a temperature regime change on brewing products, which cannot be estimated using the existing method due to the high turbidity, is shown

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ аналитичСскиС характСристики поликапиллярных хроматографичСских ΠΊΠΎΠ»ΠΎΠ½ΠΎΠΊ с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ капилляров

    Get PDF
    Straight gas chromatography multicapillary columns (MCC) with 40 Β΅m diameter capillaries (hereafter – 40 Β΅m MCC) have been known for quite a long time and are well studied; they are used in portable gas analyzers. Some chromatographic characteristics of 25 Β΅m MCCs, which appeared relatively recently, were also studied, while commercially available 60 and 80 Β΅m MCCs are poorly studied. In this work the main analytical characteristics of 60 and 80 Β΅m MCCs were determined and compared with the characteristics of 25 and 40 Β΅m MCCs. It was shown that the maximum specific efficiency of the columns decreased with increasing column capillary diameter and is approximately 24.8, 18.2, 13.7 and 9.5 thousand theoretical plates (t.p.) per meter for 25, 40, 60 and 80 Β΅m MCCs, respectively. It was established that the height equivalent to a theoretical plate of 60 and 80 ΞΌm MCCs was not varied significantly over a wide range of carrier gas velocities (nitrogen and helium), which allowed operating MCCs at high carrier gas flows essentially without loss of their efficiency. Moreover, for all MCCs the separation rate for peaks with a retention factor over 10 exceeded 600 t.p./s, and for peaks with a lower retention factor could be several thousand t.p./s, which is significantly higher than for conventional capillary and packed columns. It was established that it was possible to create very high carrier gas flows (up to 1000 cm3/min or more) for 60 Β΅m MCCs and especially 80 Β΅m MCCs at a relatively low pressure drop across the column. Therefore they can work as a part of chromatographic systems that require high carrier gas flow.Keywords: fast gas chromatography, multicapillary column, column efficiency, column height equivalent to the theoretical plate, separation rate, carrier gas velocity, carrier gas pressure.ΠŸΡ€ΡΠΌΡ‹Π΅ газохроматографичСскиС поликапиллярныС ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ (ПКК) с капиллярами Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 40 ΠΌΠΊΠΌ (Π΄Π°Π»Π΅Π΅ ПКК 40 ΠΌΠΊΠΌ) извСстны достаточно Π΄Π°Π²Π½ΠΎ ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹, ΠΎΠ½ΠΈ находят ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π² составС ΠΏΠΎΡ€Ρ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ°Π½Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€ΠΎΠ². Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ хроматографичСскиС характСристики ΠΏΠΎΡΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π΅Π΄Π°Π²Π½ΠΎ ПКК 25 ΠΌΠΊΠΌ, ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚Π΅ΠΌ коммСрчСски доступныС ПКК 60 ΠΈ 80 ΠΌΠΊΠΌ ΠΌΠ°Π»ΠΎΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ основныС аналитичСскиС характСристики ПКК 60 ΠΈ 80 ΠΌΠΊΠΌ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΈΡ… сравнСниС с характСристиками ПКК 25 ΠΈ 40 ΠΌΠΊΠΌ. Показано, Ρ‡Ρ‚ΠΎ максимальная ΡƒΠ΄Π΅Π»ΡŒΠ½Π°Ρ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ»ΠΎΠ½ΠΎΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° капилляров ΠΊΠΎΠ»ΠΎΠ½ΠΎΠΊ ΠΈ составляСт ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 24.8, 18.2, 13.7 ΠΈ 9.5 тысяч тСорСтичСских Ρ‚Π°Ρ€Π΅Π»ΠΎΠΊ (Ρ‚.Ρ‚.) Π½Π° ΠΌΠ΅Ρ‚Ρ€ Π΄Π»ΠΈΠ½Ρ‹ для ПКК 25, 40, 60 ΠΈ 80 ΠΌΠΊΠΌ соотвСтствСнно. УстановлСно, Ρ‡Ρ‚ΠΎ высота, эквивалСнтная Ρ‚.Ρ‚., ПКК 60 ΠΈ 80 ΠΌΠΊΠΌ Π½Π΅ сильно измСняСтся Π² ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ скоростСй Π³Π°Π·Π°-носитСля (Π°Π·ΠΎΡ‚ ΠΈ Π³Π΅Π»ΠΈΠΉ), Ρ‡Ρ‚ΠΎ позволяСт ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ПКК ΠΏΡ€ΠΈ высоких ΠΏΠΎΡ‚ΠΎΠΊΠ°Ρ… Π³Π°Π·Π°-носитСля Π±Π΅Π· сущСствСнной ΠΏΠΎΡ‚Π΅Ρ€ΠΈ ΠΈΡ… эффСктивности. ΠŸΡ€ΠΈ этом для всСх ПКК ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ раздСлСния для ΠΏΠΈΠΊΠΎΠ² с Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ удСрТивания Π±ΠΎΠ»Π΅Π΅ 10 ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 600 Ρ‚.Ρ‚./с, Π° для ΠΏΠΈΠΊΠΎΠ² с мСньшим Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ удСрТивания ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ нСсколько тысяч Ρ‚.Ρ‚./с, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ для ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… капиллярных ΠΈ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Ρ… ΠΊΠΎΠ»ΠΎΠ½ΠΎΠΊ. УстановлСно, Ρ‡Ρ‚ΠΎ для ПКК 60 ΠΌΠΊΠΌ ΠΈ особСнно ПКК 80 ΠΌΠΊΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ созданиС ΠΎΡ‡Π΅Π½ΡŒ высоких ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π³Π°Π·Π°-носитСля (Π΄ΠΎ 1000 см3/ΠΌΠΈΠ½ ΠΈ Π±ΠΎΠ»Π΅Π΅) ΠΏΡ€ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΌ ΠΏΠ΅Ρ€Π΅ΠΏΠ°Π΄Π΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠΉ Π½Π° ΠΊΠΎΠ»ΠΎΠ½ΠΊΠ΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π² составС хроматографичСских систСм, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΡ… высокий ΠΏΠΎΡ‚ΠΎΠΊ Π³Π°Π·Π°-носитСля.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: скоростная газовая хроматография, поликапиллярныС ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ, высота, эквивалСнтная тСорСтичСской Ρ‚Π°Ρ€Π΅Π»ΠΊΠ΅, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ раздСлСния, ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠ»ΠΎΠ½ΠΊΠΈ, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π³Π°Π·Π°-носитСля, Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ Π³Π°Π·Π°-носитСля
    • …
    corecore