5,745 research outputs found

    Supercritical electric dipole and migration of electron wave function in graphene

    Full text link
    We study the Dirac equation for quasiparticles in gapped graphene with two oppositely charged impurities by using the technique of linear combination of atomic orbitals and variational Galerkin--Kantorovich method. We show that for sufficiently large charges of impurities the wave function of the occupied electron bound state of the highest energy changes its localization from the negatively charged impurity to the positively charged one as the distance between the impurities increases. This migration of the electron wave function of supercritical electric dipole is a generalization of the familiar phenomenon of the atomic collapse of single charged impurity to the case where electron-hole pairs are spontaneously created from vacuum in bound states with charge impurities thus partially screening them.Comment: 8 pages, 6 Figures, and video; submitted to Europhysics Letter

    Influence of backreaction of electric fields and Schwinger effect on inflationary magnetogenesis

    Full text link
    We study the generation of electromagnetic fields during inflation when the conformal invariance of Maxwell's action is broken by the kinetic coupling f2(ϕ)FμνFμνf^{2}(\phi)F_{\mu\nu}F^{\mu\nu} of the electromagnetic field to the inflaton field ϕ\phi. We consider the case where the coupling function f(ϕ)f(\phi) decreases in time during inflation and, as a result, the electric component of the energy density dominates over the magnetic one. The system of equations which governs the joint evolution of the scale factor, inflaton field, and electric energy density is derived. The backreaction occurs when the electric energy density becomes as large as the product of the slow-roll parameter ϵ\epsilon and inflaton energy density, ρEϵρinf\rho_{E}\sim \epsilon \rho_{\rm inf}. It affects the inflaton field evolution and leads to the scale-invariant electric power spectrum and the magnetic one which is blue with the spectral index nB=2n_{B}=2 for any decreasing coupling function. This gives an upper limit on the present-day value of observed magnetic fields below 1022G10^{-22}\,{\rm G}. It is worth emphasizing that since the effective electric charge of particles eeff=e/fe_{\rm eff}=e/f is suppressed by the coupling function, the Schwinger effect becomes important only at the late stages of inflation when the inflaton field is close to the minimum of its potential. The Schwinger effect abruptly decreases the value of the electric field, helping to finish the inflation stage and enter the stage of preheating. It effectively produces the charged particles, implementing the Schwinger reheating scenario even before the fast oscillations of the inflaton. The numerical analysis is carried out in the Starobinsky model of inflation for the powerlike faαf\propto a^{\alpha} and Ratra-type f=exp(βϕ/Mp)f=\exp(\beta\phi/M_{p}) coupling functions.Comment: 21 pages, 8 figure

    Azimuthal Angular Distributions in EDDE as Spin-Parity Analyser and Glueball Filter for LHC

    Full text link
    Exclusive Double Diffractive Events (EDDE) are analysed as the source of information about the central system. Experimental possibilities for exotic particles searches are considered. From the reggeized tensor current picture some azimuthal angle dependences were obtained to fit the data from WA102 experiment and to make predictions for LHC collider.Comment: LaTeX, 20 pages, 7 figures, references are adde

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM
    corecore