23 research outputs found

    Folate deficiency induces neurodegeneration and brain dysfunction in mice lacking uracil DNA glycosylase

    Get PDF
    Folate deficiency and resultant increased homocysteine levels have been linked experimentally and epidemiologically with neurodegenerative conditions like stroke and dementia. Moreover, folate deficiency has been implicated in the pathogenesis of psychiatric disorders, most notably depression. We hypothesized that the pathogenic mechanisms include uracil misincorporation and, therefore, analyzed the effects of folate deficiency in mice lacking uracil DNA glycosylase (Ung-/-) versus wild-type controls. Folate depletion increased nuclear mutation rates in Ung-/- embryonic fibroblasts, and conferred death of cultured Ung-/- hippocampal neurons. Feeding animals a folate-deficient diet (FD) for 3 months induced degeneration of CA3 pyramidal neurons in Ung-/- but not Ung+/+ mice along with decreased hippocampal expression of brain-derived neurotrophic factor protein and decreased brain levels of antioxidant glutathione. Furthermore, FD induced cognitive deficits and mood alterations such as anxious and despair-like behaviors that were aggravated in Ung-/- mice. Independent of Ung genotype, FD increased plasma homocysteine levels, altered brain monoamine metabolism, and inhibited adult hippocampal neurogenesis. These results indicate that impaired uracil repair is involved in neurodegeneration and neuropsychiatric dysfunction induced by experimental folate deficiency

    Non-negative constrained inversion approaches for unmixing chromophores in multispectral optoacoustic tomography.

    No full text
    Due to modeling and experimental imperfections, multispectral optoacoustic tomography images are often afflicted with negative values, which are further amplified when propagating into the spectrally unmixed images of chromophore concentrations. Since negative values have no physical meaning, accuracy can potentially be improved by imposing non-negativity constraints on the initial reconstructions and the unmixing steps. Herein, we compare several non-negative constrained approaches with reconstruction and spectral unmixing performed separately or combined in a single inverse step. The quantitative performance and sensitivity of the different approaches in detecting small amounts of spectrally-distinct chromophores are studied in tissue-mimicking phantoms and mouse experiments
    corecore