5 research outputs found

    Dual Effect of the Extract from the Fungus Coriolus Versicolor on Lipopolysaccharide-Induced Cytokine Production in RAW 264.7 Macrophages Depending on the Lipopolysaccharide Concentration

    Get PDF
    Purpose: Extract from the fungus Coriolus versicolor (CV) is classified as an immunological response modifier. Previously, we have shown that this extract induces interleukin 6 (IL-6)-related extension of lipopolysaccharide (LPS)-induced fever. This study investigated the effect of CV extract on the production of pro-inflammatory cytokines and the expression of components of signal transduction pathways leading to the secretion of cytokines from RAW 264.7 macrophages stimulated with different doses of LPS. Methods: RAW 264.7 cells were stimulated with CV extract alone or co-treated with CV extract and LPS. The level of IL-6 and tumour necrosis factor α (TNF-α) in the culture media was measured using ELISA. Protein expression of Toll-like receptor (TLR) 4, phosphorylated IκB (p-IκB), CD14 glycoprotein and phospho-phosphatidylinositol 3-kinase (p-PI3K) was evaluated using Western blot. The effects of TLR4, nuclear factor κB (NF-κB) and p-PI3K on cytokine secretion were estimated using inhibitors: TAK-242, JSH-23 and Y294002. Results: CV extract itself stimulates the secretion of IL-6 and TNF-α and increases the expression of TLR4, p-IκB and p-PI3K. The presence of CV extract during the treatment of cells with lower concentrations of LPS (10 and 100 ng/mL) increases the cytokine production. Co-stimulation of cells with CV extract and LPS at a higher dose (500 ng/mL) decreases the secretion of cytokines. This effect is related to the changes in the expression of TLR4, CD14 glycoprotein, p-IκB and p-PI3K. Conclusion: This is the first report showing that the CV extract-induced production of cytokines is mediated by the PI3K signalling pathway. This extract acts antagonistically or additively with LPS on the production of IL-6 and TNF-α, depending on the LPS concentration. Our results are helpful for illustrating the mechanisms for the immunostimulatory effect of CV extract in inflammatory processes

    Protein Palmitoylation and Its Role in Bacterial and Viral Infections

    No full text
    S-palmitoylation is a reversible, enzymatic posttranslational modification of proteins in which palmitoyl chain is attached to a cysteine residue via a thioester linkage. S-palmitoylation determines the functioning of proteins by affecting their association with membranes, compartmentalization in membrane domains, trafficking, and stability. In this review, we focus on S-palmitoylation of proteins, which are crucial for the interactions of pathogenic bacteria and viruses with the host. We discuss the role of palmitoylated proteins in the invasion of host cells by bacteria and viruses, and those involved in the host responses to the infection. We highlight recent data on protein S-palmitoylation in pathogens and their hosts obtained owing to the development of methods based on click chemistry and acyl-biotin exchange allowing proteomic analysis of protein lipidation. The role of the palmitoyl moiety present in bacterial lipopolysaccharide and lipoproteins, contributing to infectivity and affecting recognition of bacteria by innate immune receptors, is also discussed

    Extract from the Coriolus versicolor Fungus as an Anti-Inflammatory Agent with Cytotoxic Properties against Endothelial Cells and Breast Cancer Cells

    No full text
    Chronic inflammation is a well-recognised tumour-enabling component, which includes bioactive molecules from cells infiltrating the tumour microenvironment and increases the risk of cancer progression. Since long-term use of the currently available anti-inflammatory drugs used in cancer therapy causes numerous side effects, the aim of this study was to investigate the effect of an extract isolated from the Coriolus versicolor fungus (CV extract) on HUVEC endothelial cells and MCF-7 breast cancer cells in a pro-inflammatory microenvironment mimicked by lipopolysaccharide (LPS). The cells were simultaneously stimulated with the LPS and CV extract. After co-treatment, the cell viability, generation of reactive oxygen species (ROS), wound-healing assay, production of the pro-inflammatory and pro-angiogenic factors (interleukin (IL) 6, IL-8, and metalloproteinase (MMP) 9)), as well as expression of Toll-like receptor (TLR) 4 and phosphorylated IκB (p-IκB) were evaluated. The results showed that the CV extract inhibited IL-6, IL-8, and MMP-9 production by the LPS-stimulated cells. This effect was accompanied by a decrease in TLR4 and p-IκB expression. The CV extract also had anti-migratory properties and induced a cytotoxic effect on the cells that was enhanced in the presence of LPS. The observed cytotoxicity was associated with an increase in ROS generation. We conclude that the CV extract possesses cytotoxic activity against cancer cells and endothelial cells and has the ability to inhibit the expression of the pro-tumorigenic factors associated with inflammation

    Fever-range whole body hyperthermia leads to changes in immune-related genes and miRNA machinery in Wistar rats

    No full text
    AbstractObjective Fever is defined as a rise in body temperature upon disease. Fever-range hyperthermia (FRH) is a simplified model of fever and a well-established medical procedure. Despite its beneficial effects, the molecular changes induced by FRH remain poorly characterized. The aim of this study was to investigate the influence of FRH on regulatory molecules such as cytokines and miRNAs involved in inflammatory processes.Methods We developed a novel, fast rat model of infrared-induced FRH. The body temperature of animals was monitored using biotelemetry. FRH was induced by the infrared lamp and heating pad. White blood cell counts were monitored using Auto Hematology Analyzer. In peripheral blood mononuclear cells, spleen and liver expression of immune-related genes (IL-10, MIF and G-CSF, IFN-γ) and miRNA machinery (DICER1, TARBP2) was analyzed with RT-qPCR. Furthermore, RT-qPCR was used to explore miRNA-155 levels in the plasma of rats.Results We observed a decrease in the total number of leukocytes due to lower number of lymphocytes, and an increase in the number of granulocytes. Furthermore, we observed elevated expressions of DICER1, TARBP2 and granulocyte colony-stimulating factor (G-CSF) in the spleen, liver and PBMCs immediately following FRH. FRH treatment also had anti-inflammatory effects, evidenced by the downregulation of pro-inflammatory macrophage migration inhibitor factor (MIF) and miR-155, and the increased expression of anti-inflammatory IL-10.Conclusion FRH affects the expression of molecules involved in inflammatory processes leading to alleviated inflammation. We suppose these effects may be miRNAs-dependent and FRH can be involved in therapies where anti-inflammatory action is needed

    Palm Oil-Rich Diet Affects Murine Liver Proteome and S-Palmitoylome

    Get PDF
    Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and β-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation
    corecore