5 research outputs found

    The role of bifidobacteria in predictive and preventive medicine: A focus on eczema and hypercholesterolemia

    Get PDF
    Bifidobacteria colonize the human gastrointestinal tract early on in life, their interaction with the host starting soon after birth. The health benefits are strain specific and could be due to the produced polysaccharides. The consumption of probiotics may prevent obesity, irritable bowel syndrome, eczema or atopic dermatitis, and asthma. Non-replicative strains of Bifidobacterium longum (NCC3001 and NCC2705) promote the differentiation of normal human epidermal keratinocytes (NHEKs), inducing a high expression of differentiation markers (keratin —KRT1—, and transglu-taminase —TGM1—) and pro-regeneration markers (cathepsins), including β-defensin-1, which plays an important role in modulating the cutaneous immune response. Strains belonging to the genera Bifidobacterium and Lactobacillus can increase tight-junction proteins in NHEKs and enhance barrier function. Bifidobacteria and lactobacilli may be used as prophylactic or therapeutic agents towards enteric pathogens, antibiotic-associated diarrhea, lactose intolerance, ulcerative colitis, irritable bowel syndrome, colorectal cancer, cholesterol reduction, and control of obesity and metabolic disorders. Bifidobacterium bifidum showed an in vitro capability of lowering cholesterol levels thanks to its absorption into the bacterial membrane. Several strains of the species Lactobacillus acidophilus, L. delbrueckii subsp. bulgaricus, L. casei, and L. gasseri led to a reduced amount of serum cholesterol due to their ability to assimilate cholesterol (in vitro). Lactococcus lactis KF147 and Lactobacillus plantarum Lp81 have also been shown to reduce cholesterol levels by 12%. Clarifying the specific health mechanisms of Bifidobacterium and Lactobacillus strains in preventing high-cost pathologies could be useful for delineating effective guidelines for the treatment of infants and adults

    The role of high molecular weight hyaluronic acid in mucoadhesion on an ocular surface model

    No full text
    Hyaluronic acid (HA) is frequently formulated in eye drops to improve the stability of the tear film by hydration and lubrication. Mucoadhesion is related to the ocular residence time and therefore to the effectiveness of the eye drops. The ocular residence time of the HA formulation is correlated with the ability of HA to create specific strong interactions in the ocular surface with the mucus layer, mainly composed of a mixture of secreted mucins (MUC; gel forming MUC5AC and MUC2) and shed membrane-bound soluble mucins (MUC1, MUC4, and MUC16). Dry eye disease (DED) is a multifactorial pathology of the preocular tear film with possible damage to the ocular surface classified in two types: (1) aqueous-deficient dry eye and (2) evaporative dry eye, caused by a decrease in goblet cell density that reduces MUC expression and/or by meibomian gland dysfunction, that results in a drop in the lipidic fraction of the tear film.In this work, the binding affinity between HA and MUC2 has been evaluated with three complementary ap-proaches because the secreted MUCs play a pivotal role in the viscoelastic properties of the tear film: 1. Rheo-logical analysis, measuring the mucoadhesive index and the complex viscosity in relation to MM (Molecular Mass) and concentration; 2. Fluorescence analysis, using a fluorescent hydrophobic probe, to investigate the conformational change of MUC2 during the interaction with the HA polymer; 3. Surface plasmon resonance analysis, used to measure the affinity between MUC2 (immobilized on the surface of a sensor chip) and the HA polymers that flowed on it at the molecular level.For all these tests, the mucoadhesive performance of the natural HA linearly increases with the MM, whereas cross-linked HA and other emollient and gelling agents (formulated in artificial tears) do not show the same mucoadhesive properties (with the exception of xanthan gum). The mucoadhesive performance of high MM HA has also been confirmed in conditions that simulate the pathological condition of the tear film during DED by decreasing the MUC2 or oleic acid concentration. Physico-chemical analysis of a series of marketed artificial tears confirms the linear correlation between the MM of the HA used in the products and the mucoadhesive index measured on the ocular surface model
    corecore