28,502 research outputs found

    The identification of physical close galaxy pairs

    Get PDF
    A classification scheme for close pairs of galaxies is proposed. The scheme is motivated by the fact that the majority of apparent close pairs are in fact wide pairs in three-dimensional space. This is demonstrated by means of numerical simulations of random samples of binary galaxies and the scrutiny of the resulting projected and spatial separation distributions. Observational strategies for classifying close pairs according to the scheme are suggested. As a result, physical (i.e., bound and spatially) close pairs are identified.Comment: 16 pages, 5 figures, accepted for publication in The Astronomical Journal, added text corrections on proof

    Elastic Foundations as Heterogeneous Adventitial Boundary Condition for the Assessment of Aortic Wall and Peri-Aortic Stiffness from Dense-MRI Data Using Inverse FEM Approach

    Get PDF
    Background: The establishment of in vivo, patient-specific, and regionally resolved techniques to quantify aortic properties is key for improving risk assessment in clinical practice and scientific understanding of cardiovascular growth and remodeling. Many in vivo studies quantify vascular stiffness using Pulse Wave Velocity. This method provides an averaged measure of stiffness for the entire aorta, ignoring variations in wall stiffness and boundary conditions. Previous studies using Displacement Encoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE-MRI) suggested that the infrarenal abdominal aorta (IAA) deforms heterogeneously throughout the cardiac cycle. Method: Herein, we hypothesize that the aortic wall strain heterogeneity is driven in healthy aortas by adventitial tethering to perivascular tissues that can be modeled with elastic foundation boundary conditions (EFBC) using a collection of linear-springs with a circumferential distribution of stiffness. Nine healthy-human IAAs were modeled using patient-specific imaging and displacement fields from SSFP and DENSE MRI, followed by assessment of aortic wall properties and heterogeneous EFBC parameters using inverse Finite Element Method (FEM). Results: In contrast to traction-free boundary condition, prescription of EFBC reduced the nodal displacement error by 60% and reproduced the DENSE-derived strain distribution. Estimated aortic stiffness was in agreement with previously reported experimental test data. The distribution of normalized EFBC stiffness was consistent among all patients and spatially correlated to standard peri-aortic anatomical features. Conclusion: Results suggest that EFBCs can be generalized for human adults with normal anatomy. This approach is computationally inexpensive, making it ideal for large-population clinical research and incorporation into computational cardiovascular fluid-structure analyses.https://scholarscompass.vcu.edu/gradposters/1113/thumbnail.jp

    Perfusion Cell Seeding and Expansion in Dual Mechanical Stimulation Bioreactor for In Vitro Tissue Development

    Get PDF
    BACKGROUND: Engineered tissues are an exciting potential source of small diameter vascular grafts due to limited supply and patency of available alternatives. Engineered tissue vascular grafts (ETVGs) will provide physiological function that resembles native arteries and maintain the required mechanical properties as they integrate with host tissue. Mechanical stimulation during incubation encourages proper cell alignment and increases extracellular matrix deposition. The enhanced organization of the engineered tissue leads to improved compliance over synthetic alternatives without sacrificing strength and may lead to better integration in vivo. METHODS: We have developed a bioreactor that mechanically trains grafts during incubation. To test the seeding efficiency of the bioreactor, rat vascular smooth muscle cells (VSMC) were seeded onto electrospun PCL scaffolds by perfusion at various cell concentrations then incubated Page | 15 for 1 week under static conditions. We assessed gross morphology with H&E; collagen with picrosirius red; and VSMC density with DAPI. ETVGs were further evaluated with mechanical testing and scanning electron microscopy to evaluate mechanical and microstructural properties. RESULTS: Cells were successfully seeded evenly onto the luminal surface of electrospun PCL scaffolds. Cells remained viable and continued to proliferate and deposit ECM throughout incubation. CONCLUSIONS: Progress in the ETVG paradigm requires a systematic approach toward better understanding of the cause-effect interplay between implant properties, host reactions, and their modulation with controllable parameters. Future directions involve the assessment of the effects of mechanical training on growth and remodeling of engineered tissues in vitro and subsequent effects on the foreign body response post-implantation in a murine model.https://scholarscompass.vcu.edu/gradposters/1115/thumbnail.jp

    Talking with experts - from research to objects: using academic research as the basis of collaborative and cross disciplinary projects for design students

    Get PDF
    The role of design is changing and after postmodern design, in which design seemed to be more related to production, business and marketing, we are currently looking at ‘the translation of scientific and technological research into tangible objects that change people's lives’ as one of the most fundamental roles of design [1]. In the majority of Higher Education institutions a significant amount of research takes place and there is considerable potential to develop applications from the results of these activities, many of which are not fully exploited. The primary aim of this project was to investigate how design methods can be used to bridge the gap between the abstraction of research and the tangible requirements of everyday life. A project targeted second year students was developed to explore this concept; it was also an opportunity for students to challenge their familiar working methods by being collaborative and interdisciplinary. First they formed teams and identified examples of scientific and engineering research expertise; they then contacted the research active academic staff working in these fields and carried out a video interview. They analysed their findings and gave a presentation outlining their approach and design development for an appropriate context. Finally the teams presented educational videos that explain and promote their design proposals to expert and non-expert audiences. The paper includes several examples of these design proposals and illustrates the benefits of collaboration for students and to researchers who see how their work can be interpreted and developed into real world tangible applications
    • …
    corecore