25,512 research outputs found
The identification of physical close galaxy pairs
A classification scheme for close pairs of galaxies is proposed. The scheme
is motivated by the fact that the majority of apparent close pairs are in fact
wide pairs in three-dimensional space. This is demonstrated by means of
numerical simulations of random samples of binary galaxies and the scrutiny of
the resulting projected and spatial separation distributions.
Observational strategies for classifying close pairs according to the scheme
are suggested. As a result, physical (i.e., bound and spatially) close pairs
are identified.Comment: 16 pages, 5 figures, accepted for publication in The Astronomical
Journal, added text corrections on proof
Gravitational wave recoils in non-axisymmetric Robinson-Trautman spacetimes
We examine the gravitational wave recoil waves and the associated net kick
velocities in non-axisymmetric Robinson-Trautman spacetimes. We use
characteristic initial data for the dynamics corresponding to non-head-on
collisions of black holes. We make a parameter study of the kick distributions,
corresponding to an extended range of the incidence angle in the
initial data. For the range of examined () the kick distributions as a function of the symmetric mass
parameter satisfy a law obtained from an empirical modification of the
Fitchett law, with a parameter that accounts for the non-zero net
gravitational momentum wave fluxes for the equal mass case. The law fits
accurately the kick distributions for the range of examined, with a
rms normalized error of the order of . For the equal mass case the
nonzero net gravitational wave momentum flux increases as increases,
up to beyond which it decreases. The maximum net
kick velocity is about for for the boost parameter considered.
For the distribution is a monotonous function of
. The angular patterns of the gravitational waves emitted are examined.
Our analysis includes the two polarization modes present in wave zone
curvature.Comment: 10 pages, 5 figures. arXiv admin note: substantial text overlap with
arXiv:1403.4581, arXiv:1202.1271, arXiv:1111.122
Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness
The choice of model design for decision analytic models in cost-effectiveness analysis has been the subject of discussion. The current work addresses this issue by noting that, when time is to be explicitly modelled, we need to represent phenomena occurring in continuous time. Multistate models evaluated in continuous time might be used but closed form solutions of expected time in each state may not exist or may be difficult to obtain. Two approximations can then be used for costeffectiveness estimation: (1) simulation models, where continuous time estimates are obtained through Monte Carlo simulation, and (2) discretized models. This work draws recommendations on their use by showing that, when these alternative models can be applied, it is preferable to implement a cohort discretized model than a simulation model. Whilst the bias from the first can be minimized by reducing the cycle length, the second is inherently stochastic. Even though specialized literature advocates this framework, the current practice in economic evaluation is to define clinically meaningful cycle lengths for discretized models, disregarding potential biases.
Anisotropy and percolation threshold in a multifractal support
Recently a multifractal object, , was proposed to study percolation
properties in a multifractal support. The area and the number of neighbors of
the blocks of show a non-trivial behavior. The value of the
probability of occupation at the percolation threshold, , is a function
of , a parameter of which is related to its anisotropy. We
investigate the relation between and the average number of neighbors of
the blocks as well as the anisotropy of
- …