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Abstract We examine the gravitational wave recoil and the
associated kick velocities in non-axisymmetric Robinson–
Trautman (RT) spacetimes. Characteristic initial data used
for the dynamics correspond to non-head-on collisions of two
black holes. We make a parameter study of the kick distribu-
tions for an extended range of the incidence angle ρ0 in the
initial data. In the range examined 3◦ ≤ ρ0 ≤ 125◦ the kick
distribution Vk as a function of the symmetric mass η satisfies
an empirically modified Fitchett law, with a parameter C that
accounts for the nonzero net gravitational wave momentum
flux in the equal-mass case. The law fits accurately the numer-
ical data with a normalized rms error ≤0.3 %. The maximum
kick velocity is �190 km/s for ρ0 �55◦. A recent modifica-
tion of the Fitchett law motivated by the effective-one-body
formalism (Nagar in Phys Rev D 88:121501R, 2013) is also
examined and, with the needed introduction of C to account
for non-head-on collisions, fits accurately the RT data with
a normalized rms error ≤3 × 10−5 %. We construct the sur-
face Vk(η, ρ0) in the parameter space of RT initial data, which
gives an overall view of the behavior of Vk as the parame-
ters change. The angular patterns of the gravitational waves
emitted are analyzed and include the two polarization modes
present in the radiative field of a non-head-on collision.

1 Introduction

The collision and merger of two black holes is presently con-
sidered to be an important astrophysical configuration where
processes of generation and emission of gravitational waves
take place (cf. [1,2] and references therein). The radiative
transfer involved in these processes, evaluated in the full
nonlinear regime of general relativity, shows that gravita-
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tional waves extract mass, momentum, and angular momen-
tum of the source, and may turn out to be fundamental
for the astrophysics of the collapse of stars and the forma-
tion of black holes. The process of momentum extraction
and the associated recoils in the system can have important
consequences for astrophysical scenarios, as the evolution
and the population of massive black holes in galaxies or in
the intergalactic medium [3–5]. Observational evidence of
black hole recoils have been reported in [6,7] and references
therein.

Gravitational wave recoils and the associated kick pro-
cesses of two black holes have been investigated within sev-
eral approaches, most of them connected to binary black
hole in-spirals. Post-Newtonian approximations (cf. [8] and
references therein) estimated the kick velocity accumulated
during the adiabatical in-spiral of the system plus the kick
velocity accumulated during the plunge phase. Sopuerta et al.
[9] computed the recoil velocity based on the close limit
approximation (CLA) supplemented with post-Newtonian
(PN) calculations. The first full numerical relativity (NR)
evaluation of the recoil in nonspinning black hole binaries
was reported by Baker et al. [3] for a mass ratio �0.667,
while González et al. [10] and Campanelli et al. [11] simul-
taneously obtained much larger recoils for black hole binaries
with antialigned spins. González et al. [12] undertook a more
complete NR treatment of kicks in the merger of black hole
binaries by contemplating a larger parameter domain. For
the case of small mass ratios in the interval 0.01 ≤ α ≤ 0.1
full numerical relativity evaluations bridged with perturba-
tive techniques were implemented in Refs. [13–16]. Le Tiec
et al. [17], combining PN+CLA methods, recently evalu-
ated the gravitational wave recoil in black hole binaries and
showed that the ringdown phase produces a significant anti-
kick. In the same vein Choi et al. [18] examined recoils in
head-on collisions of black holes, considering the head-on
case as a model problem which can be seen as an approx-
imation to the final plunge to merger and allow one to iso-
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late kick effects from the orbital in-spiral motion. Finally
Rezzolla et al. [19,20] obtained an important injective rela-
tion between the kick velocities and the effective curvature
parameter of the global apparent horizon in head-on colli-
sions, using initial data derived in [21,22]. In spite of the
enormous progress achieved until now using approxima-
tion methods and numerical techniques, the information on
wave form patterns and radiative transfer processes in the
dynamics of gravitational wave emission is far from being
complete [23].

In this paper we examine the distribution of kicks for a
large domain of the collision angle ρ0, a parameter of the
initial data for non-head-on collisions of two black holes
used in our simulations. The work completes Ref. [24] where
we examined the energy and momentum extraction in the
post-merger phase of non-head-on collisions, in the realm of
Robinson–Trautman (RT) spacetimes [25,26]. Our treatment
is based on the Bondi–Sachs (BS) conservation laws [27–
31] that regulate the radiative transfer processes involved in
the emission of gravitational waves. The characteristic initial
data constructed for the dynamics already present a global
apparent horizon so that the dynamics covers the post-merger
phase of the system up to the final configuration of the rem-
nant black hole. The novel feature of this topic is connected to
the presence of a nonzero net gravitational wave momentum
flux in the non-head-on case, absent in the cases of non-
spinning black hole binary in-spirals or head-on collisions
examined in the literature of numerical relativity simula-
tions. The resulting kick distributions, for relatively large
angles of collision ρ0, have a monotonous behavior with
the symmetric mass-ratio parameter, also not seen yet in the
literature.

We also examine the angular patterns of the gravita-
tional waves. Our analysis includes the two polarization
modes present in the radiative field of a non-head-on col-
lision. Previous treatments of the angular patterns in the
emission of gravitational waves—connected to the lumi-
nosity and the angular distribution of the emitted energy
(antenna pattern)—were done in Refs. [32–37] where the
authors used a post-Newtonian approach and showed the uni-
versality of gravitational bremsstrahlung in the low deflec-
tion encounters of two massive bodies. However, the use of
black hole initial conditions and distinct incidence angles
were not contemplated due to the approximations used.
In Ref. [21] angular patterns of gravitational waves emit-
ted in small mass-ratio head-on collisions of two black
holes were examined, presenting short bursts of gravitational
bremsstrahlung. Also Ref. [38] addressed the angular pat-
tern of the same system examined here; however, the analy-
sis there is incomplete, since its authors did not realize the
presence of the additional polarization mode B in the wave
zone curvature of non-axisymmetric Robinson–Trautman
spacetimes.

Due to the presence of a global apparent horizon the ini-
tial data effectively represents an initial single distorted black
hole which is evolved via the RT dynamics. Similarly to
the case of the CLA—where the perturbation equations of
a black hole [39–41] are feeded either with numerically gen-
erated, or with Misner, or Bowen–York-type initial data—
we feed the (nonlinear) RT equation with the above men-
tioned characteristic data. It is in this sense that we denote the
dynamics thus generated as “the post-merger phase of two
colliding black holes”. The interpretation of the outcomes
of the RT dynamics should be considered with the above
caveats.

In the next section we give a brief review of the basic
properties of RT spacetimes which will be necessary for the
discussions in the paper.

2 Robinson–Trautman spacetimes

RT spacetimes [25,26] are asymptotically flat solutions of
Einstein’s vacuum equations that describe the exterior grav-
itational field of a bounded system radiating gravitational
waves. In a suitable coordinate system the metric can be
expressed as

ds2 =
(
λ(u, θ, φ) − 2m0

r
+ 2r

K,u

K

)
du2 + 2dudr

−r2 K 2(u, θ, φ)
(

dθ2 + sin2 θdφ2
)
, (1)

where

λ(u, θ, φ) = 1

K 2 − (K,θ sin θ/K ),θ

K 2 sin θ

+ 1

sin2 θ

(
K 2

,φ

K 4 − K,φφ

K 3

)
. (2)

The Einstein vacuum equations for (1) result in

− 6m0
K,u

K
+ 1

2K 2

( (λ,θ sin θ),θ

sin θ
+ λ,φφ

sin2 θ

)
= 0. (3)

Subscripts u, θ and φ, preceded by a comma, denote deriva-
tives with respect to u, θ and φ, respectively. m0 > 0 is the
only dimensional parameter of the geometry, which fixes the
mass and length scales of the spacetime. Equation (3), the RT
equation, governs the dynamics of the system and allows one
to evolve the initial data K (u0, θ, φ), given in the characteris-
tic surface u = u0, for times u > u0. For sufficiently regular
initial data RT spacetimes exist globally for all positive u
and converge asymptotically to the Schwarzschild metric as
u → ∞ [42,43]. Once the initial data K (u0, θ, φ) is spec-
ified, a unique apparent horizon (AH) solution is fixed for
that u0 [44,45]. Since the AH is the outer past marginally
trapped surface, the closest of a white hole definition (the
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remnant black hole will form as u → ∞), only the exte-
rior and its future development via RT dynamics with out-
going gravitational waves is of interest. We note that all the
BS quantities, measured at the future null infinity J +, are
constructed and well defined under the outgoing radiation
condition [19,20,31].

The field equations have a stationary solution that will
play an important role in our discussions,

K (θ, φ) = K0

cosh γ + (n · x̂) sinh γ
, (4)

where x̂ = (sin θ cos φ, sin θ sin φ, cos θ) is the unit vector
along an arbitrary direction x, and n = (n1, n2, n3) is a con-
stant unit vector (satisfying n2

1 + n2
2 + n2

3 = 1). Also K0 and
γ are constants. We note that (4) yields λ = 1/K 2

0 , show-
ing its stationary character. This solution can be interpreted
[27] as a boosted black hole along the axis determined by the
unit vector n with boost parameter γ , or equivalently, with
velocity parameter v = tanh γ . The Bondi mass function
associated with (4) is m(θ, φ) = m0 K 3(θ, φ) and the total
mass-energy of this gravitational configuration is given by
the Bondi mass

MB = (1/4π)

∫ 2π

0
dφ

∫ π

0
m(θ, φ) sin θ dθ

= m0 K 3
0 cosh γ = m0 K 3

0/
√

1 − v2. (5)

The interpretation of (4) as a boosted black hole is relative to
the asymptotic Lorentz frame which is the rest frame of the
black hole when γ = 0.

In the paper we use units such that 8πG = c = 1; c
is however restored in the definition of the kick velocity.
All the numerical results were done for the boost parameter
γ = 0.5. In our computational work we used m0 = 10 but
the results are given in terms of u/m0. We should note that
we can always set m0 = 1 in the RT equation (3) by the
transformation u → ũ = u/m0.

3 The Bondi–Sachs four-momentum for RT spacetimes
and the initial data

Since RT spacetimes describe asymptotically flat radiating
spacetimes and the initial data of its dynamics are prescribed
on null characteristic surfaces, they are in the realm of the 2+2
Bondi–Sachs formulation of gravitational waves in general
relativity [27–30]. Consequently we must use suitable physi-
cal quantities of this formulation appearing in the description
of gravitational wave emission processes, as the BS four-
momentum and its conservation laws. A detailed derivation
of the BS four-momentum conservation laws in RT space-
times was given in [31]. We can show that, from the supple-
mentary vacuum Einstein equations in the B-S integration
scheme together with the outgoing radiation condition, the

B-S four-momentum conservation laws for RT spacetimes
are

dPμ(u)

du
= Pμ

W (u), (6)

where

Pμ(u) = 1

4π

∫ 2π

0
dφ

∫ π

0
m(u, θ, φ) lμ sin θ dθ (7)

is the Bondi–Sachs four-momentum and where m(u, θ, φ)

is the Bondi mass function. In the above the four vec-
tor lμ = (1,− sin θ cos φ,− sin θ sin φ,− cos θ), defined in
an asymptotic Lorentz frame, characterizes the generators

lμ
(
∂/∂U

)
of the BMS translations in the temporal and Carte-

sian x, y, z directions of the asymptotic Lorentz frame [30],
and

Pμ
W (u) = − 1

4π

∫ 2π

0
dφ

∫ π

0
K lμ

(
c(1)
,u

2 + c(2)
,u

2
)

sin θ dθ

(8)

is the net flux of energy-momentum carried out by the gravi-
tational waves. In (8), the quantities c(1)

,u and c(2)
,u are the news

functions for RT spacetimes expressed as

c(1)
,u (u, θ, φ) = 1

2

(
P,θθ − P,θ cot θ − P,φφ

sin2 θ

)
,

c(2)
,u (u, θ, φ) = 1

sin θ

(
P,θφ − P,φ cot θ

)
, (9)

where we have introduced the variable P ≡ 1/K , for nota-
tion convenience. We remark that c(1)

,u = 0 = c(2)
,u for the

boosted Schwarzschild solution (4), as should be expected.
The mass-energy conservation law (Eq. (6) for μ = 0) is the
Bondi mass formula. Our main interest here is the analysis of
the momentum conservation, (Eq. (6), for μ = x, y, z. Due
to the planar nature of a general collision, namely, the motion
of the two initial colliding black holes and the motion of the
remnant are restricted to a plane, without loss of generality
we will fix this plane as the (x, z)-plane so that the momen-
tum conservation equations relevant to our discussion reduce
to

dP(u)

du
= PW (u), (10)

with

PW (u) = 1

4π

∫ 2π

0
dφ

∫ π

0
n̂ K

(
c(1)

u
2 + c(2)

u
2
)

dθ, (11)

where n̂ = (sin θ cos φ, 0, cos θ). Obviously P y is con-
served, a consequence of P y

W (u) = 0 for all u.
The initial data to be used was derived in Ref. [24] and

is interpreted as representing two instantaneously colliding
Schwarzschild black holes in the (x, z) plane, at u = u0,
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K (u0, θ, φ) =
( α1√

cosh γ + cos θ sinh γ
+ α2√

cosh γ − (cos ρ0 cos θ + sin ρ0 sin θ cos φ) sinh γ

)2
. (12)

In the derivation of (12) it turns out that α2/α1 is the mass
ratio of the Schwarzschild mass of the initial data, as seen
by an asymptotic observer. It is also worth mentioning the
following properties of (12): (i) for α2 = 0 (α1 	= 0) or
α1 = 0 (α2 	= 0) the initial data (12) corresponds to a
boosted Schwarzschild black hole along, respectively, the
positive z-axis and along the direction defined by unit vec-
tor n = (− cos ρ0, 0, sin ρ0) with respect to an asymptotic
Lorentz frame (cf. Eq. (4)). (ii) The specific combination (12)
of two black hole solutions (4) is not arbitrary but arises as the
conformal factor of an asymptotically flat 3-geometry which
is a solution of the constraint (3) R = 0. (iii) Additionally
(12) results in a planar dynamics, namely, for all u the net
gravitational wave momentum flux PW (u) is restricted to the
plane determined by the unit vectors nz and n defining the
direction of motion of the two black holes entering in (12);
the momentum of the remnant black hole is also contained
in this plane, as should be expected. The above properties
reinforces the interpretation of (12) as related to the post-
merger phase of a black hole collision. The parameter ρ0 of
the initial data, which we denote the incidence angle, defines
the direction of the second initial black hole with respect to
the z-axis of the asymptotic Lorentz observer. γ is the boost
parameter of the black hole solutions (4) which enter in (12).
As in the 1+3 numerical relativity approach the interpreta-
tion of the initial data parameters involves an approximation,
namely, that the initial gravitational interaction in the data is
neglected.

As mentioned already this data has a single apparent hori-
zon so that the evolution covers the post-merger regime up to
the final configuration, when the gravitational wave emission
ceases. It is worth remarking here that, in the full Bondi–
Sachs problem, further data (the news functions) are needed
to determine the evolution of the system. However for the RT
dynamics the news are specified once K (u, θ, φ) is given, cf.
(9).

4 Numerical evolution

The initial data (12) is evolved numerically via the RT equa-
tion (3), which is integrated using a Galerkin method with
a spherical harmonics projection basis space [46] adapted
to the non-axisymmetric dynamics of RT spacetimes. The
implementation of the Galerkin method, as well as its accu-
racy and stability for long time runs, is described in detail
in Section V of Ref. [24]. The autonomous dynamical sys-
tem derived with the Galerkin basis projection is integrated

using a fourth-order Runge–Kutta recursive method (adapted
to our constraints) together with a C++ integrator [24] for a
truncation N = 7. Exhaustive numerical experiments show
that after a sufficiently long time u ∼ u f all the modal
coefficients of the Galerkin expansion become constant up
to 12 significant digits, corresponding to the final time of
computation u f . At u f the gravitational wave emission is
considered to effectively cease. By reconstructing numer-
ically K (u, θ, φ) for all u > u0 we can obtain the time
behavior of important physical quantities, as for instance the
net gravitational wave flux and the associated total impulse
imparted to the merged system by the emission of gravita-
tional waves. From the final constant modal coefficients we
obtain K (u f , θ, φ) that, in all cases, can be approximated as

K (u f , θ, φ)

� K f

cosh γ f + (n1 f sin θ cos φ + n3 f cos θ) sinh γ f
.

(13)

With the final parameters (K f , γ f , n1 f , n3 f ) obtained from
the final modal coefficients, we have in all cases that the rms
error of Eq. (13) is of the order of, or smaller than 10−12.
The final configuration corresponds then to a Schwarzschild
black hole (cf. (4)) along the direction determined by n f =
(n1 f , 0, n3 f ), with a final boost parameter γ f and a final
Bondi rest mass m0 K 3

f . In all cases γ f < γ and K f > 1. The

angle ρ f = cos−1(n3 f ) defines the direction of the remnant
with respect to the z-axis. Within the numerical error of our
computation we have (n1 f )

2 + (n3 f )
2 = 1 as expected.

The values of the parameters of the remnant black hole
are one of the basic results to be extracted from our numer-
ical experiments, and are included in the tables of the next
sections.

5 Gravitational wave net momentum fluxes and kicks
in a non-head-on collision

We can now examine the processes of momentum extrac-
tion and the associated impulses imparted to the merged
system by the emission of gravitational waves. Our starting
point is the construction, of the curves of the net momen-
tum fluxes carried out by gravitational waves, via the numer-
ically integrated function K (u, θ, φ). Our numerical work
in the present paper contemplates the parameter intervals
α = (0, 1] and ρ0 = [3◦, 125◦], with γ = 0.5 fixed.
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Fig. 1 Left Linear-log plot of the net fluxes of momentum Px
W (u) and

Pz
W (u) for α = 0.25, γ = 0.5 and incidence angle ρ0 = 60◦. The

figures shows a dominant deceleration regime corresponding to a short

pulse of gravitational bremsstrahlung of duration Δu/m0 ∼ 10. Right
Plot of the gravitational wave impulses I x

W (u) (dashed curve) and I z
W (u)

(continuous curve) associated with the fluxes of the left figure

Integrating in time the conservation Eq. (10) we find that

P(u) − P(u0) = IW (u), (14)

where

IW (u) = 1

4π

∫ u

u0

du′
∫ 2π

0
dφ

∫ π

0
K

(
c(1)

u′
2+c(2)

u′
2)

n̂ sin θdθ

(15)

is the impulse imparted to the merged system due to the
momentum carried out by the gravitational waves emitted up
to the time u, with n̂ = (sin θ cos φ, 0, cos θ).

In Fig. 1 (left) we show the curves of the net momentum
fluxes Px

W (u) and Pz
W (u) for the mass ratio α = 0.25 and the

incidence angle ρ0 = 60◦, for u > u0. For this value of ρ0

the net momentum flux is negative for all u, corresponding
to a strong deceleration regime of the system by the emis-
sion of gravitational waves up to the final configuration of
the remnant black hole, when the gravitational wave emis-
sion ceases. We can also see that these fluxes correspond to
short pulses of gravitational bremsstrahlung in an interval
Δu/m0 ∼ 10. For incidence angles smaller than 55◦ (and
γ = 0.5) the net momentum flux Pz

W (u) is always positive
for a short initial period.

The behavior of the associated impulses is illustrated in
Fig. 1 (right). As expected I z

W (u) and I x
W (u) are negative

for all u and tend to a constant negative value (a plateau)
for large u ∼ u f corresponding to the final configuration
of the system, that of the remnant black hole. The plateau
is considered to be reached when |IW (u) − IW (u + h)| �
10−10, where h is the stepsize of the integration used for the
evaluation of IW (u). At this stage the remnant black hole has
a momentum P = (n1 f , 0, n3 f ) Pf , with

Pf = m0 K 3
f sinh γ f . (16)

The numerical tables include values of the parameters char-
acterizing the remnant black hole for several ρ0. Typically the

net total impulse imparted to the system has a dominant con-
tribution from the deceleration regimes (where Pz

W (u) < 0
and Px

W (u) < 0) and will correspond to a net kick on the
merged system. As we will discuss later this net total impulse
corresponds to the momentum of the remnant in a zero-
initial-Bondi-momentum frame.

From Eq. (14) we derive

P(u f ) − P(u0) = IW (u f ), (17)

where the right-hand side of (17) are the nonzero components
of the net total impulse IW (u f ) generated by the gravitational
waves emitted. The values of IW (u f ) correspond to the final
plateau which are present the impulse curves for any value of
the initial data parameters, as illustrated for instance in Fig. 1
(right).

We define the net kick velocity Vk as proportional to the
net momentum imparted to the system by the total impulse
of the gravitational waves. This definition is based on the
impulse function IW (u) evaluated at u = u f (cf. Eqs. (17))
and are in accordance with [12]. We obtain (restoring uni-
versal constants)

Vk = c

m0 K 3
f

IW (u f ), (18)

with modulus

Vk = c

m0 K 3
f

√
(I x

W (u f ))2 + (I z
W (u f ))2, (19)

where m0 K 3
f is the rest mass of the remnant black hole.

Taking into account the momentum conservation equations
evaluated at u = u f we interpret (18) as the balance between
the Bondi momentum of the system and the impulse of
the gravitational waves in a zero-initial-Bondi-momentum
frame, which can then be compared with the results of the
literature. We remark that the zero-initial-Bondi-momentum
frame is the inertial frame related to the asymptotic Lorentz
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Table 1 Summary of our numerical results corresponding to an incidence angle ρ0 = 21◦ and boost parameter γ = 0.5

α η K f v f /c = tanh γ f ρ f −I x
W (u f )/m0 −V x

k I z
W (u f )/m0 −V z

k Vk (km/s)

0.025 0.0238 1.045113 0.446426 0.37◦ 1.2792 × 10−6 0.3362 8.1563 × 10−6 2.1435 2.1700

0.050 0.0453 1.091454 0.430867 0.77◦ 5.6819 × 10−6 1.3110 3.3361 × 10−5 7.6973 7.8082

0.100 0.0826 1.187836 0.400255 1.65◦ 2.7635 × 10−5 4.9467 1.3834 × 10−4 24.7624 25.2517

0.150 0.1134 1.289162 0.370480 2.64◦ 7.4349 × 10−5 10.4105 3.1932 × 10−4 44.7116 45.9076

0.200 0.1388 1.395446 0.341701 3.77◦ 1.5575 × 10−4 17.1953 5.7681 × 10−4 63.6818 65.9625

0.250 0.1600 1.506701 0.314042 5.06◦ 2.8314 × 10−4 24.8334 9.0763 × 10−4 79.6062 83.3897

0.300 0.1775 1.622933 0.287600 6.53◦ 4.6910 × 10−4 32.9220 1.3051 × 10−3 91.5906 97.3278

0.400 0.2040 1.870356 0.238634 10.17◦ 1.0733 × 10−3 49.2111 2.2569 × 10−3 103.4813 114.5867

0.500 0.2222 2.137755 0.195219 15.06◦ 2.0929 × 10−3 64.2673 3.3174 × 10−3 101.8707 120.4489

0.525 0.2257 2.207669 0.185282 16.53◦ 2.4287 × 10−3 67.7154 3.5817 × 10−3 99.8653 120.6584

0.600 0.2344 2.425151 0.157731 21.77◦ 3.6700 × 10−3 77.1919 4.3295 × 10−3 91.0621 119.3771

0.700 0.2422 2.732560 0.126756 31.14◦ 5.9634 × 10−3 87.6814 5.0986 × 10−3 74.9656 115.3597

0.800 0.2469 3.059989 0.103331 44.09◦ 9.1477 × 10−3 95.7801 5.3968 × 10−3 56.5069 111.2063

0.900 0.2493 3.407441 0.0888800 60.85◦ 1.3413 × 10−2 101.7102 4.9651 × 10−3 37.6501 108.4551

1.000 0.2500 3.774920 0.084214 79.50◦ 1.8965 × 10−2 105.7664 3.5148 × 10−3 19.6022 107.5675

Table 2 Summary of our numerical results corresponding an incidence angle ρ0 = 60◦ and boost parameter γ = 0.5

α η K f v f /c = tanh γ f ρ f −I z
W (u f )/m0 −V z

k I x
W (u f )/m0 −V x

k Vk (km/s)

0.025 0.0238 1.046192 0.449147 0.96◦ 6.6062 × 10−5 1.7308 2.1448 × 10−5 0.5619 1.82

0.050 0.0453 1.093620 0.436498 1.96◦ 2.7298 × 10−4 6.2611 9.5087 × 10−5 2.1809 6.63

0.100 0.0826 1.192193 0.412238 4.09◦ 1.1585 × 10−3 20.5097 4.6058 × 10−4 8.1544 22.07

0.150 0.1134 1.295730 0.389466 6.39◦ 2.7465 × 10−3 37.8757 1.2341 × 10−3 17.0181 41.52

0.200 0.1388 1.404241 0.368273 8.86◦ 5.1147 × 10−3 55.4133 2.5750 × 10−3 27.8986 62.04

0.250 0.1600 1.517733 0.348716 11.50◦ 8.3286 × 10−3 71.4675 4.6642 × 10−3 40.0231 81.91

0.300 0.1775 1.636210 0.330825 14.30◦ 1.2443 × 10−2 85.2179 7.7020 × 10−3 52.7483 100.22

0.400 0.2041 1.888139 0.300047 20.36◦ 2.3543 × 10−2 104.9265 1.7522 × 10−2 78.0913 130.80

0.500 0.2222 2.160553 0.275760 26.92◦ 3.8669 × 10−2 115.1038 3.4014 × 10−2 101.2470 153.30

0.600 0.2344 2.451965 0.257534 33.79◦ 5.7953 × 10−2 117.9375 5.9437 × 10−2 120.9574 168.94

0.900 0.2493 3.447766 0.232319 54.03◦ 14.0634 × 10−2 102.9436 21.5876 × 10−2 158.0197 188.59

1.000 0.2500 3.819731 0.231060 60.00◦ 17.5950 × 10−2 94.7135 30.4756 × 10−2 164.0495 189.43

frame used in our computations by a velocity transformation
with velocity parameter vB = P(u0)/m0 K 3

f ; in the parame-
ter domain of our numerical experiments the relativistic cor-
rections in this transformation may be neglected. We note that
the velocity (18) is directed along an axis making the angle
Θ f = arctan(I x

W (u f )/I z
W (u f )) with the negative z-axis of

the zero-initial-Bondi-momentum frame.
For our initial data (12) we have numerically evaluated

Vk contemplating an extended range of the parameters α and
ρ0, with fixed γ = 0.5. The numerical results, illustrated
in Tables 1 and 2 for the cases ρ0 = 21◦ and ρ0 = 60◦,
respectively, are used to construct the distribution curves of
the kick velocities Vk versus the symmetric mass parameter
η = α/(1+α)2. The numerical evaluations contemplated 15

values of ρ0 in the interval 3◦ −125◦. These distributions are
shown in Fig. 2, for two separate domains of the incidence
angle ρ0, the first corresponding to a domain of ρ0 for which
Vk for α = 1 increases with ρ0, and the latter for which Vk

for α = 1 decreases with the increase of ρ0. The threshold
between the two behaviors is ρ0 � 55◦. The cases ρ0 =
110◦, 115◦, 125◦ were not included in the figures to avoid
overcluttering, presenting a similar monotonous increase in
η. The continuous curves are the best fit of the points to the
empirical analytical formula

V (η) = Aη2(1 − 4Cη)1/2(1 + Bη) × 103 km/s, (20)

with best-fit parameters given in Table 3. Equation (20) is
an empirical modification of the Fitchett law [8,47], where
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Fig. 2 Plot of the points (Vk, η), where Vk is the net kick velocity
(19) due to the total impulse imparted on the merged system by the
gravitational waves emitted: (left) for ρ0 = 3◦ (rectangles), ρ0 = 10◦
(diamonds), ρ0 = 21◦ (squares), ρ0 = 30◦ (circles) and ρ0 = 50◦
(black dots); (right) for ρ0 = 55◦ (rectangles), ρ0 = 60◦ (black dots),

ρ0 = 70◦ (squares), ρ0 = 80◦ (circles) and ρ0 = 90◦ (triangles). The
continuous curves of both figures correspond to the least-square fit of
the points to the analytical formula (20), with best-fit parameters given
in Table 3

Table 3 Data for gravitational wave recoil of the equal-mass case (α = 1), and the best-fit parameters for the empirical law V = Aη2(1 −
4Cη)1/2(1 + Bη) × 103 km/s. For the case α = 1 we have the exact relation ρ f = (180◦ − ρ0)/2

ρ0 K f IW (u f )/m0 (α = 1) Vk(α = 1) km/s A B C

3◦ 3.76843271 0.00300016 16.81843886 3.63330391 2.66808801 0.99802690

10◦ 3.76980618 0.00963759 53.96754802 3.63652172 2.62946623 0.97947440

21◦ 3.77491989 0.01932698 107.78594166 3.64355211 2.43737398 0.91349987

30◦ 3.78172010 0.02592443 143.80115617 3.63128481 2.21967562 0.83395393

40◦ 3.79190470 0.03139079 172.72343203 3.56021379 1.95471187 0.72811277

45◦ 3.79797695 0.03326940 182.15398438 3.49052673 1.82788018 0.67157657

50◦ 3.80466278 0.03452600 188.06979866 3.40420169 1.69568427 0.61463197

55◦ 3.81192716 0.03517381 190.50524979 3.29095966 1.56847542 0.55735444

60◦ 3.81973073 0.03521390 189.55581124 3.15252462 1.45291476 0.50196512

70◦ 3.83677573 0.03357055 178.31193985 2.81848260 1.20442961 0.39473745

80◦ 3.85539222 0.02997635 156.92580163 2.40820424 0.96981877 0.29582448

90◦ 3.87510068 0.02499139 128.84352941 1.94862882 0.76602544 0.21165881

110◦ 3.83677573 0.01286913 68.35512596 1.03429322 0.39544396 0.07400366

115◦ 3.82802972 0.01027124 54.93108403 0.83429182 0.31046537 0.04432110

125◦ 3.81192716 0.00596900 32.32877651 0.49586913 0.17357402 0.00048779

the additional parameter C was empirically introduced to
account for the nonzero net gravitational wave momentum
flux in the equal-mass case α = 1. (20) reduces to the
Fitchett law for C = 1. The Fitchett law was derived from
post-Newtonian analysis and used by a number of authors
[12,17,47] to adjust the distribution of kick velocities in
numerical relativity evaluations of the gravitational wave
recoil in merging binary in-spirals of black holes and consis-
tently yields a zero result for the equal-mass case. There-
fore the results for kick distributions in the non-head-on
case have no connection with black hole binary in-spirals,
but rather possibly with two colliding black holes in pre-
merger unbounded trajectories, or in hyperbolic encounters
of two nonspinning black holes followed by a merger, the lat-

ter configuration recently discussed by Gold and Brügmann
[48]. We mention that the modification introduced in (20)
is the only one that works to produce an accurate fit of our
results, with normalized rms error of the order of, or smaller
that 0.3 %, for the whole range of ρ0 considered, this error
decreasing as ρ0 increases.

Recently Nagar [49], motivated by the effective-one-body
formalism, suggested a modification of the Fitchet law for
binary black holes of the form

VN (η) = Aη2(1 − 4Cη)1/2 f (η) × 103 km/s, (21)

where f (η) = (1+ B1η+ B2η
2 + B3η

3 + B4η
4) and C = 1.

We verified that such a model, with the introduction of the
factor C 	= 1 needed to account for non-head-on collisions,
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is also able to fit the RT data. In fact (21) yields a very accu-
rate fit for RT data with a normalized rms error (between
the curve and numerical points) of the order of, or smaller
than 3 × 10−5 % for the range of ρ0 considered, this error
decreasing as ρ0 increases. We remark that the normalized
rms error is four orders of magnitude smaller than the fit
with the empirical law (20). The curves for each law, if plot-
ted together, are indistinguishable on the scale of Fig. 2. We
illustrate the case ρ0 = 21◦ for which the best-fit parameters
for the RT data (cf. Table 1) yield

VN (η) : A = 3.85658173, C = 0.91693952,

B1 = 1.64062349, B2 = 1.74625704,

B3 = 1.32354811, B4 = 2.17284986,

V (η) : A = 3.64355211, C = 0.91349987,

B1 = 2.43737398.

The difference Δ(η) = |VN (η) − V (η)| is evaluated to be
bounded, Δ ≤ 0.3 km/s, for all η. In fact we verified that
the upper bound of Δ(η) decreases monotonically with ρ0,
from Δ ≤ 0.46 km/s for ρ0 = 3◦ to Δ ≤ 0.005 km/s
for ρ0 = 90◦. Consequently, with the introduction of the
parameter C needed to account for non-head-on collisions,
the Nagar distribution law (21) yields a very accurate function
compatible to fit the RT data for kick velocities, as it does
for numerical relativity simulations of binary black hole in-
spirals. We have a final comment that may be relevant for
the present issue. As discussed in [49], the introduction of
multipole terms in the wave form up to l = 8 is essential
for obtaining (21). Now in our physical description with the
RT dynamics the multipole expansion is not necessary since
we have the exact expressions for the wave forms rΨ4 ∼
(D + i B) and equivalently for the total impulses IW (u f ),
Eqs. (23) and (15) respectively. If we extend f (η) in (21) up
to the sixth power in η we verify that the error of the fit of
RT numerical points relative to the former fourth power fit is
negligible, indicating a rapid convergence of f (η).

In Fig. 3 we plot the parameters A, B and C (associated
with the best fit of the law (20) to the numerical RT data)
versus ρ0, as given in Table 3. The continuous curves are
the best fit of the points through an eighth order polynomial
least-squares method. A similar pattern is verified for the
parameters A, B and C in the distribution (21). By using
the best-fit curves A(ρ0), B(ρ0) and C(ρ0) (cf. Fig. 3) and
the kick velocity distributions we are able to construct the
surface Vk(η, ρ0) in the parameter space of RT initial data
for non-head-on collisions of black holes, as shown in Fig. 4.
This gives us a global view of the behavior of Vk as the mass-
ratio and incidence angle parameters vary, as for instance the
absolute maximum of Vk for (η = 0.25, ρ0 � 55◦).

The nonzero kick velocity for the non-head-on data with
α = 1 deserves a further discussion that, without loss of gen-
erality, will be restricted to the case ρ0 = 21◦. In this instance

A

B

C

0 20 40 60 80 100 120
0.0

0.5
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1.5

2.0
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3.5

Fig. 3 Plots of the best-fit parameters A, B and C for the law (20), in
terms of ρ0 (cf. Table 3). The continuous curves are the best fit of the
points through an eighth order polynomial least-squares method

Fig. 4 Plot of the kick velocity as a surface Vk(η, ρ0) in the parameter
space of RT initial data

we can evaluate the components of the initial BS momen-
tum to be, Px (0)/m0 � 4.489093, Pz(0)/m0 � 0.832004
and P y(0)/m0 � 0, with respect to an asymptotic Lorentz
observer. This momentum vector, which lies in the right
quadrant of the upper hemisphere z > 0 of the plane x − z,
makes an angle ΘB = arctan |Px (0)/Pz(0)| � 1.387537
radians (or ΘB � 79.5◦) with the positive z-axis. This is
also the direction of the nonzero momentum of the remnant
with respect to the same asymptotic Lorentz frame, deter-
mined by the angle ρ f , which satisfies ρ f = (180◦ − ρ0)/2
for α = 1 and any ρ0 (cf. Table 3 and Ref. [24]). The axis
determined by ρ f ≡ ΘB actually plays an important role in
the dynamics. If we take a new frame with its z-axis coincid-
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ing with this axis the net gravitational wave momentum flux
vector PW (u) lies along the new z-axis for all u. This was
verified numerically by evaluating the ratios of the computed
fluxes, sampled in the interval 0 < u/m0 ≤ 890, yielding
in all cases arctan |I x

W (u)/I z
W (u)| � 1.387541 with a rela-

tive error of the order of 10−6. Still in this new frame the
data will not be symmetric under θ → π − θ , leading to a
nonzero net gravitational wave momentum flux, contrary to
the case of merging binary in-spirals and head-on collisions.
As expected the z-axis of the new frame is the direction of the
kick velocity since arctan |I x

W (u f )/I z
W (u f )| � 1.387547 rad

or � 79.5◦ (within the precision of data in Table 1).
A remark is in order now concerning the balance between

the total rest mass of the remnant and the total net impulse
of the gravitational waves in the distributions of the net kick
velocity, as observed from the numerical results displayed in
the tables. In the domain 0 < ρ0 < 55◦, as η increases
from 0 to 0.25, both the parameter K f and the total net

impulse IW (u f ) =
√

(I x
W (u f ))2 + (I z

W (u f ))2 increase; however,
the increase of the rescaled Bondi rest mass of the remnant,
K 3

f , is smaller than the increase of IW (u f ) up to η � 0.225,
implying that in this range the net kick velocity increases in
accordance with (19). Beyond this point the increase of K 3

f
is larger than the increase of the total net impulse leading to
a decrease in the values of Vk up to η = 0.25. On the other
hand, in the domain 55◦ < ρ0 < 125◦, the above behavior is
reversed leading to the monotonous increase in η shown in
Fig. 2.

In general, in a zero-initial-Bondi-momentum frame, the
Bondi momentum of the merged system satisfies P(u) =
IW (u) so that an integral curve x(u) of the wave impulse
vector field IW (u), defined as dx/du = P(u), can give a
schematic picture of the motion of the merged system in this
frame. In Fig. 5 we display this integral curve for α = 0.2
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Fig. 5 Plot of the integral curve x(u) of the wave impulse vector field
IW (u) which can give a schematic picture of the motion of the system
in the zero-momentum-Bondi frame, for α = 0.2 and ρ0 = 21◦. The
asymptote of the curve as u → u f makes an angle Θ f � 15.11◦ with
the negative z-axis of this frame

and ρ0 = 21◦, generated with initial conditions x(u0) = 0 =
z(u0) in the zero-initial-Bondi-momentum frame. The initial
phase of positive momentum flux along z is responsible for
the curved form of the trajectory in the semiplane z > 0.
For u → u f the curve approaches the asymptote with angle
Θ f = arctan(I x

W (u f )/I z
W (u f )) � 15.11◦ with respect to the

negative z-axis of the zero-initial-Bondi-momentum frame,
which is actually the direction of the kick velocity in this
frame. In the case α = 1 the integral curve is a straight line
with angle Θ f � 79.5◦ ≡ (180◦ − 21◦)/2 with respect
to the z-axis of the zero-initial-Bondi-momentum frame (cf.
Table 3).

6 The angular wave pattern and the bremsstrahlung
regime of the gravitational waves

The radiative character of RT spacetimes is given by the
expression of its curvature tensor that in a suitable semi-null
tetrad basis [24] assumes the form

RABCD = NABCD

r
+ IIIABCD

r2 + IIABCD

r3 , (22)

where the quantities NABCD, IIIABCD and IIABCD are of the alge-
braic type N , III and II, respectively, in the Petrov classifica-
tion of the curvature tensor [50,51], and r is the distance
parameter along the principal null direction ∂/∂r . Equa-
tion (22) displays the peeling property [52,53] of the cur-
vature tensor, showing that indeed RT is the exterior gravita-
tional field of a bounded source emitting gravitational waves.
For large r we have

RABCD ∼ NABCD

r
, (23)

so that at large r the gravitational field looks like a gravita-
tional wave with propagation vector ∂/∂r . The nonvanishing
of the NABCD is therefore an invariant criterion for the pres-
ence of gravitational waves, and the asymptotic region where
O(1/r)-terms are dominant defined as the wave zone. The
curvature tensor components in the above basis that con-
tribute to NABCD are R0303 = −R0202 = −D(u, θ, φ)/r +
O(1/r2) and R0203 = −B(u, θ, φ)/r + O(1/r2) where

D(u, θ, φ) = −P2 ∂u

(c(1)
,u (u, θ, φ)

P

)
,

B(u, θ, φ) = −P2 ∂u

(c(2)
,u (u, θ, φ)

P

)
, (24)

with the news c(1)
,u (u, θ, φ) and c(2)

,u (u, θ, φ) given in (9).
From (23) we can see that the functions D and B contain
all the information of the angular, and time dependence of
the gravitational wave amplitudes in the wave zone, once
K (u, θ, φ) is given. D and B actually correspond to the two
polarization modes of the gravitational wave, transverse to
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Fig. 6 Left Polar plot of
√

D2 + B2 (section by the plane φ = 0◦,
corresponding to the plane of the collision) for times u = 0.01 (dot-
ted), u = 0.05 (dash-dotted) and u = 0.1 (continuous), and initial data
parameters α = 0.2, ρ0 = 55◦ and γ = 0.5. The figure shows a typical
bremsstrahlung pattern, corresponding to a strong deceleration regime
at early times, with two dominant lobes along the direction of motion of

the merged system. The cone enveloping the two dominant lobes opens
up as u increases. Right Polar plot of

√
D2 + B2 for the same configu-

ration of the left figure, at a later time u = 5.0, showing the opening of
the lobes and the setting already of the final quadrupole pattern. The z
direction corresponds to the vertical axis

the direction of propagation in the wave zone. We note that in
the axisymmetric case B = 0, which is the case of head-on
collisions. We will consider the particular combination

D(u, θ, φ) + i B(u, θ, φ) ∼ (rΨ4), (25)

where Ψ4 is the Weyl spinor associated with NABCD/r
in a suitable Newman–Penrose null tetrad basis [53–55].
The quantity (25) is specified once we have the function
K (u, θ, φ), which is numerically obtained via the numeri-
cal integration of the dynamics, as we have discussed.

In Fig. 6 (left) we display the polar plots of
√

D2 + B2 at
early times u = 0.01 (dotted), u = 0.05 (dash-dotted) and
u = 0.1 (continuous), and initial data parameters α = 0.2,
ρ0 = 55◦ and γ = 0.5, with section by the plane φ = 0◦
(corresponding to the plane of collision (x, z)). The plots
show, for each time, a pattern with two dominant lobes in
the forward direction of motion of the merged system. The
direction of the Bondi momentum vector at u = 0.01 makes
an angle ΘB � 8, 43◦ with the z axis. The pattern is typical
of a bremsstrahlung process due to the deceleration of the
merged system, analogous to the electromagnetic case of a
charge decelerated along its direction of motion. As time
increases we observe that the cone enveloping the dominant
lobes opens up and the amplitudes decrease. For later times
the pattern evolves to the expected quadrupole structure with
a much smaller amplitude, as shown in Fig. 6 (right) for
u = 5.0. We mention that the increase of the initial boost
parameter γ would sharpen the forward cone enveloping of
the two dominant lobes in the early regime, as expected in a

Fig. 7 Polar plot of
√

D2 + B2 (section by the plane φ = 90◦, corre-
sponding to the plane (y, z) orthogonal to the plane of collision) for a
time u = 0.1 and the same initial data parameters of previous figures.
The symmetry about the z-axis is in accordance with the conservation of
P y

W (u) = 0. Although gravitational waves are emitted outside the plane
of collision, the zero net momentum flux of this radiation component is
consistent with the planar nature of the collision

ultrarelativistic configuration. In our computations we fixed
m0 = 10. In the figures the z direction corresponds to the
vertical axis.

In Fig. 7 we show the polar plot of
√

D2 + B2, with sec-
tion by the plane φ = 90◦ (corresponding to the plane (y, z),
orthogonal to the plane of collision), at u = 0.1. The same
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initial data parameters of the previous Figures were used. As
expected the pattern is symmetric about the z axis in accor-
dance with the conservation of P y

W (u) = 0. We then see
that, although gravitational waves are emitted outside the
plane of the collision, this radiation component has a zero
net momentum flux; therefore it does not extract momen-
tum of the system, consistent with the planar nature of the
collision.

7 Conclusions and final comments

In the present paper we have examined the gravitational wave
recoils and the associated net kick velocities in the post-
merger phase of two black holes in non-head-on collision,
by contemplating an extended domain of the incidence angle
parameter ρ0 present in the initial data. Our treatment is made
in the realm of Robinson–Trautman dynamics and based on
the Bondi–Sachs characteristic formulation of gravitational
waves, and completes Ref. [24]. The kick velocity distribu-
tions are evaluated for an extended domain of the incident
angle parameter, 3◦ ≤ ρ0 ≤ 125◦, of the initial data. We
also obtain that in general the total net impulse is negative
for all u which, from the Bondi–Sachs momentum conserva-
tion laws, corresponds to a dominant deceleration regime of
the system due to the emission of gravitational waves. How-
ever, for relatively small values of the mass-ratio parameter
α and of ρ0, an initial positive impulse in the z direction may
be present, which will be responsible for an initial in-spiral
branch in the motion of the system.

By using the Bondi–Sachs conservation laws we evaluate
the net kick velocity Vk imparted to the system as propor-
tional to the total net gravitational wave impulse in a zero-
initial-Bondi-momentum frame. For each value of the inci-
dence angleρ0 considered the distributions of Vk as a function
of the symmetric mass parameter η are obtained.

The distributions of Vk as a function of η were shown to be
fitted, for the whole domain of ρ0 considered, by the empir-
ical law (20) obtained by a modification of the Fitchett η-
scaling law, this modification corresponding to the introduc-
tion of an additional parameter C to account for the nonzero
gravitational wave momentum fluxes in the equal-mass case
(η = 0.25) of non-head-on collisions. The best fit of the
points (Vk, η) with the modified law is sufficiently accurate
with a normalized rms error of the order of, or smaller than
0.3 % for all ρ0 considered. For ρ0 = 0◦ (the case of head-
on collisions) we have C = 1 and this distribution reduces
to the Fitchett law, as expected. For large incidence angles
(e.g. ρ0 > 55◦ in the case of γ = 0.5) the distributions
are monotonous in η. We also verified that the best-fit val-
ues of the parameter C decrease monotonically from C = 1
as the incidence angle ρ0 increases. Finally we examined
a kick distribution law recently proposed in [49] using the

effective-one-body formalism (with the needed introduction
of C to account for non-head-on collisions). We showed that
this modified distribution yields a very accurate fit for RT
numerical data, with a normalized rms error ≤3 × 10−5 %,
this error decreasing as ρ0 increases. By using the best-fit
curves A(ρ0), B(ρ0) and C(ρ0) for the results in Table 3
and the kick velocity distributions we constructed the sur-
face Vk(η, ρ0) in the parameter space of RT initial data for
non-head-on collisions of black holes, giving an overall view
of the behavior of Vk as the parameters are changed.

A novel feature of non-head-on collisions (ρ0 	= 0) is
a nonzero net gravitational wave flux for the equal-mass
case, contrary to the cases of head-on collisions and merg-
ing of black hole in-spiral binaries. This implies that the net
kick velocity for non-head-on collisions are nonzero for the
equal-mass case. As a consequence the results for kick dis-
tributions in the non-head-on case have no connection with
black hole binary in-spirals, but rather possibly with two col-
liding black holes in pre-merger unbounded trajectories, or
in hyperbolic encounters of two black holes followed by a
merger as recently discussed by Gold and Brügmann [48].

We examined the behavior of the integral curves of the
gravitational wave impulse IW (u) that, in accordance with
the Bondi–Sachs momentum conservation law, can describe
the motion of the merged system in a zero-initial-Bondi-
momentum frame. This integral curve exhibits an initial in-
spiral branch in the positive z semiplane whenever an initial
phase of Pz

W (u) > 0 is present.
Finally we have examined the angular patterns of the radi-

ation both in the initial regime, when the emission is typically
bremsstrahlung, and in later times when the quadrupole pat-
tern is already set up.
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