698 research outputs found

    Regulation of Lymphocyte Apoptosis by Interferon Regulatory Factor 4 (IRF-4)

    Get PDF
    To ensure that homeostasis of the immune system is maintained, the sensitivity of lymphocytes to Fas-mediated apoptosis is differentially regulated during their activation. The molecular mechanisms that link the activation program of lymphocytes to changes in sensitivity to Fas-mediated apoptosis have, however, not been fully characterized. In these studies, we have investigated whether Fas-mediated apoptosis can be regulated by interferon regulatory factor 4 (IRF-4), a lymphoid-restricted member of the IRF family of transcription factors. IRF-4 expression is upregulated during lymphocyte activation and IRF-4–deficient mice have defects in both lymphocyte activation and homeostasis. Here, we show that stable expression of IRF-4 in a human lymphoid cell line that normally lacks IRF-4 leads to a significantly enhanced apoptotic response on Fas receptor engagement. A systematic examination of the downstream effectors of Fas signaling in IRF-4–transfected cells demonstrates an increased activation of caspase-8, as well as an increase in Fas receptor polarization. We demonstrate that IRF-4–deficient mice display defects in activation-induced cell death, as well as superantigen-induced deletion, and that these defects are accompanied by impairments in Fas receptor polarization. These data suggest that IRF-4, by modulating the efficiency of the Fas-mediated death signal, is a novel participant in the regulation of lymphoid cell apoptosis

    Symptomatic aggravation after corticosteroid pulse therapy in definite sporadic Creutzfeldt-Jakob disease with the feature of Hashimoto¿s encephalopathy

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background: Creutzfeldt-Jakob disease and Hashimotos encephalopathy often show similar clinical presentation. Among Creutzfeldt-Jakob disease mimics, Hashimotos encephalopathy is particularly important as it is treatable with corticosteroids. Thus, in cases of middle-aged woman diagnosed with probable Creutzfeldt-Jakob disease and who exhibit high titers of antithyroid antibodies, corticosteroid pulse therapy is typically performed with expectations of near complete recovery from Hashimotos encephalopathy. Herein, we provide the first case report that exhibited a negative effect of corticosteroid pulse therapy for a patient with Creutzfeldt-Jakob disease with features of Hashimotos encephalopathy. Case presentation: We report a case of 59-year-old Asian woman with blurred vision, dysarthria, myoclonus, and rapidly progressive dementia. Cerebrospinal fluid showed 14-3-3 protein positive. Electroencephalogram showed periodic sharp waves (1.5 Hz) at the bilateral frontal or occipital areas. Magnetic resonance imaging showed high signal intensities at the bilateral cerebral cortex, caudate nucleus, and putamen. The patient was diagnosed with probable Creutzfeldt-Jakob disease. However, serum analysis showed a high titer of antithyroid antibodies. We started corticosteroid pulse therapy with subsequent aggravation of seizure activity including generalized myoclonus, epilepsia parialis continua, and ballistic dyskinesia, which was effectively treated with clonazepam. Conclusion: We provide evidence of a case of Creutzfeldt-Jakob disease that exhibited clinical deterioration after corticosteroid therapy. Although histopathological confirmation with brain biopsy is not easily available in Creutzfeldt-Jakob disease patients, selective initiation of corticosteroid pulse therapy should be considered in cases of uncertain diagnosis for differentiation with Hashimotos encephalopathy.Peer Reviewe

    Effect of Combination Therapy with Sodium Ozagrel and Panax Ginseng on Transient Cerebral Ischemia Model in Rats

    Get PDF
    Sodium ozagrel (SO) prevents platelet aggregation and vasoconstriction in the cerebral ischemia. It plays an important role in the prevention of brain damage induced by cerebral ischemia/reperfusion. Recently, many animal studies have suggested that the Panax ginseng (PG) has neuroprotective effects in the ischemic brain. In this study, we assessed the neuroprotective effects that come from a combination therapy of SO and PG in rat models with middle cerebral artery occlusion (MCAO). Animals with MCAO were assigned randomly to one of the following four groups: (1) control (Con) group, (2) SO group (3 mg/kg, intravenously), (3) PG group (200 mg/kg, oral feeding), and (4) SO + PG group. The rats were subjected to a neurobehavior test including adhesive removal test and rotarod test at 1, 3, 7, 10, and 15 days after MCAO. The cerebral ischemic volume was quantified by Metamorph imaging software after 2-3-5-triphenyltetrazolium (TTC) staining. The neuronal cell survival and astrocytes expansion were assessed by immunohistofluorescence staining. In the adhesive removal test, the rats of PG or SO + PG group showed significantly better performance than those of the control group (Con: 88.1 ± 24.8, PG: 43.6 ± 11, SO + PG: 11.8 ± 7, P < .05). Notably, the combination therapy group (SO + PG) showed better performance than the SO group alone (SO: 56 ± 12, SO + PG: 11.8 ± 7, P < .05). In TTC staining for infarct volume, cerebral ischemic areas were also significantly reduced in the PG group and SO + PG group (Con: 219 ± 32, PG: 117 ± 8, SO + PG: 99 ± 11, P < .05). Immunohistofluorescence staining results showed that the group which received SO + PG group therapy had neuron cells in the normal range. They also had a low number of astrocytes and apoptotic cells compared with the control or SO group in the peri-infarction area. During astrocytes staining, compared to the SO + PG group, the PG group showed only minor differences in the number of NeuN-positive cells and quantitative analysis of infarct volume. In conclusion, these studies showed that in MCAO rat models, the combination therapy with SO and PG may provide better neuroprotective effects such as higher neuronal cell survival and inhibition of astrocytes expansion than monotherapy with SO alone

    Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Marrow Mesenchymal Stem Cell in the Ischemic Rat Brain

    Get PDF
    This study investigated the effect of bone marrow mesenchymal stem cells (BMSCs) on the motor pathway in the transient ischemic rat brain that were transplanted through the carotid artery, measuring motor-evoked potential (MEP) in the four limbs muscle and the atlantooccipital membrane, which was elicited after monopolar and bipolar transcortical stimulation. After monopolar stimulation, the latency of MEP was significantly prolonged, and the amplitude was less reduced in the BMSC group in comparison with the control group (P < .05). MEPs induced by bipolar stimulation in the left forelimb could be measured in 40% of the BMSC group and the I wave that was not detected in the control group was also detected in 40% of the BMSC group. Our preliminary results imply that BMSCs transplanted to the ischemic rat brain mediate effects on the functional recovery of the cerebral motor cortex and the motor pathway
    corecore