637 research outputs found

    Distributed probability of slope failure in Thailand under climate change

    Get PDF
    Landslides are more widespread compared to any other geological hazards in Thailand. The steep slope and high elevation areas have more potential for landslide hazards. However, weather extremes, particularly extreme rainfall, play a major role in the occurrence of landslides in Thailand. The objective of the present study is to analyze the changes in the probability of landslide occurrences in Thailand due to climate change. For this purpose, probabilistic landslide hazard maps for extreme rainfall values for 5-, 10-, 50-, and 100-year return periods are developed for historical and future climatic conditions, derived from 10 global climate models (GCMs) under two representative concentration pathway (RCP) scenarios, namely, RCP 4.5 and RCP 8.5. The results reveal that the 5-year return period extreme rainfall amount will reach 200 mm/month in the eastern and southern provinces for RCP 4.5 and the northwestern, eastern, and southern provinces for RCP 8.5. The increase in extreme rainfall will cause a sharp increase in the landslide probability in Thailand, except in low altitude regions. The probability of 100-year return period landslide will increase by 90% in 40% and 80% of the areas in Thailand under RCP 4.5 and RCP 8.5, respectively. It is expected that the landslide hazard maps developed in this study will help policy makers take necessary measures to mitigate increasing landslide events due to climate change. Keywords: Climate scenarios, Extreme rainfall, Global circulation models, Landslide, Thailan

    Vibrational spectroscopy analysis of ligand efficacy in human M₂ muscarinic acetylcholine receptor (M₂R)

    Get PDF
    振動分光法を駆使した薬剤効能測定法の開発 --アセチルコリン受容体を標的とした神経疾患の治療薬開発への期待--. 京都大学プレスリリース. 2021-12-01.The intrinsic efficacy of ligand binding to G protein-coupled receptors (GPCRs) reflects the ability of the ligand to differentially activate its receptor to cause a physiological effect. Here we use attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to examine the ligand-dependent conformational changes in the human M₂ muscarinic acetylcholine receptor (M₂R)). We show that different ligands affect conformational alteration appearing at the C=O stretch of amide-I band in M2R. Notably, ATR-FTIR signals strongly correlated with G-protein activation levels in cells. Together, we propose that amide-I band serves as an infrared probe to distinguish the ligand efficacy in M₂R) and paves the path to rationally design ligands with varied efficacy towards the target GPCR

    Endogenous agonist–bound S1PR3 structure reveals determinants of G protein–subtype bias

    Get PDF
    脂質受容体の新たな活性化機構を解明 --脂質がまっすぐ伸びて活性化--. 京都大学プレスリリース. 2021-06-10.Sphingosine-1-phosphate (S1P) regulates numerous important physiological functions, including immune response and vascular integrity, via its cognate receptors (S1PR1 to S1PR5); however, it remains unclear how S1P activates S1PRs upon binding. Here, we determined the crystal structure of the active human S1PR3 in complex with its natural agonist S1P at 3.2-Å resolution. S1P exhibits an unbent conformation in the long tunnel, which penetrates through the receptor obliquely. Compared with the inactive S1PR1 structure, four residues surrounding the alkyl tail of S1P (the “quartet core”) exhibit orchestrating rotamer changes that accommodate the moiety, thereby inducing an active conformation. In addition, we reveal that the quartet core determines G protein selectivity of S1PR3. These results offer insight into the structural basis of activation and biased signaling in G protein–coupled receptors and will help the design of biased ligands for optimized therapeutics

    Cryo-EM structures of human zinc transporter ZnT7 reveal the mechanism of Zn²⁺ uptake into the Golgi apparatus

    Get PDF
    クライオ電子顕微鏡により、ゴルジ体の亜鉛輸送体による亜鉛輸送機構の全容を解明 細胞の亜鉛恒常性維持機構の理解に大きな進展. 京都大学プレスリリース. 2023-08-29.Zinc ions (Zn²⁺) are vital to most cells, with the intracellular concentrations of Zn²⁺ being tightly regulated by multiple zinc transporters located at the plasma and organelle membranes. We herein present the 2.2-3.1 Å-resolution cryo-EM structures of a Golgi-localized human Zn²⁺/H+ antiporter ZnT7 (hZnT7) in Zn²⁺-bound and unbound forms. Cryo-EM analyses show that hZnT7 exists as a dimer via tight interactions in both the cytosolic and transmembrane (TM) domains of two protomers, each of which contains a single Zn²⁺-binding site in its TM domain. hZnT7 undergoes a TM-helix rearrangement to create a negatively charged cytosolic cavity for Zn²⁺ entry in the inward-facing conformation and widens the luminal cavity for Zn²⁺ release in the outward-facing conformation. An exceptionally long cytosolic histidine-rich loop characteristic of hZnT7 binds two Zn²⁺ ions, seemingly facilitating Zn²⁺ recruitment to the TM metal transport pathway. These structures permit mechanisms of hZnT7-mediated Zn²⁺ uptake into the Golgi to be proposed

    Structural insights into the G protein selectivity revealed by the human EP3-Gi signaling complex

    Get PDF
    熱、炎症などに関与するプロスタグランジン受容体EP3シグナリング複合体の可視化 --緑内障、高眼圧症治療薬の合理的設計に貢献--. 京都大学プレスリリース. 2022-09-15.Prostaglandin receptors have been implicated in a wide range of functions, including inflammation, immune response, reproduction, and cancer. Our group has previously determined the crystal structure of the active-like EP3 bound to its endogenous agonist, prostaglandin E₂. Here, we present the single-particle cryoelectron microscopy (cryo-EM) structure of the human EP3-Gi signaling complex at a resolution of 3.4 Å. The structure reveals the binding mode of Gi to EP3 and the structural changes induced in EP3 by Gi binding. In addition, we compare the structure of the EP3-Gi complex with other subtypes of prostaglandin receptors (EP2 and EP4) bound to Gs that have been previously reported and examine the differences in amino acid composition at the receptor-G protein interface. Mutational analysis reveals that the selectivity of the G protein depends on specific amino acid residues in the second intracellular loop and TM5

    Open Access

    Get PDF
    The development of loop-mediated isothermal amplification targeting alpha-tubulin DNA for the rapid detection of Plasmodium viva

    Structure of the dopamine D2 receptor in complex with the antipsychotic drug spiperone

    Get PDF
    統合失調症に関わるドパミン受容体の構造解明 --副作用を抑えた薬の迅速な探索・設計が可能に--. 京都大学プレスリリース. 2020-12-24.In addition to the serotonin 5-HT2A receptor (5-HT2AR), the dopamine D2 receptor (D2R) is a key therapeutic target of antipsychotics for the treatment of schizophrenia. The inactive state structures of D2R have been described in complex with the inverse agonists risperidone (D2Rris) and haloperidol (D2Rhal). Here we describe the structure of human D2R in complex with spiperone (D2Rspi). In D2Rspi, the conformation of the extracellular loop (ECL) 2, which composes the ligand-binding pocket, was substantially different from those in D2Rris and D2Rhal, demonstrating that ECL2 in D2R is highly dynamic. Moreover, D2Rspi exhibited an extended binding pocket to accommodate spiperone’s phenyl ring, which probably contributes to the selectivity of spiperone to D2R and 5-HT2AR. Together with D2Rris and D2Rhal, the structural information of D2Rspi should be of value for designing novel antipsychotics with improved safety and efficacy

    Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine

    Get PDF
    新規光駆動型イオンチャネルの構造解明と高性能分子ツールの創出 --神経科学に光を当てる--. 京都大学プレスリリース. 2022-02-03.ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology

    Antinociceptive activity of Mentha piperita leaf aqueous extract in mice

    Get PDF
    Mentha piperita L. (Labiatae) is an herbaceous plant, used in folk medicine for the treatment of several medical disorders.In the present study, the aqueous extract of Mentha piperita leaf, at the i.p doses 200 and 400 mg/kg, showed significant analgesic effects against both acetic acid-induced writhing and hot plate-induced thermal stimulation in mice, with protection values of 51.79% and 20.21% respectively. On the contrary, the Mentha piperita leaf aqueous extract did not exhibit anti-inflammatory activity against carrageenan induced paw oedema.These findings indicate that Mentha piperita has a potential analgesic effect that may possibly have mediated centrally and peripherally, as well as providing a pharmacological evidence for its traditional use as a pain reliever

    LL-Z1640-2 for rheumatoid arthritis

    Get PDF
    Objectives: Aberrant NLRP3 inflammasome activation has been demonstrated in rheumatoid arthritis (RA), which may contribute to debilitating inflammation and bone destruction. Here, we explored the efficacy of the potent TGF-β-activated kinase-1 (TAK1) inhibitor LL-Z1640-2 (LLZ) on joint inflammation and bone destruction in collagen-induced arthritis (CIA). Methods: LL-Z1640-2 was administered every other day in CIA mice. Clinical and histological evaluation was performed. Priming and activation of NLRP3 inflammasome and osteoclastogenic activity were assessed. Results: NLRP3 inflammasome formation was observed in synovial macrophages and osteoclasts (OCs) in CIA mice. TACE and RANKL were also overexpressed in synovial macrophages and fibroblasts, respectively, in the CIA joints. Treatment with LLZ mitigated all the above changes. As a result, LLZ markedly suppressed synovial hypertrophy and pannus formation to alleviate pain and inflammation in CIA mice. LLZ could block the priming and activation of NLRP3 inflammasome in RAW264.7 macrophage cell line, primary bone marrow macrophages and OCs upon treatment with LPS followed by ATP, thereby suppressing their IL-1β production. LLZ also suppressed LPS-induced production of TACE and TNF-α in bone marrow macrophages and abolished IL-1β-induced production of MMP-3, IL-6 and RANKL in synovial fibroblasts. In addition, LLZ directly inhibits RANKL-mediated OC formation and activation. Conclusion: TAK1 inhibition with LLZ may become a novel treatment strategy to effectively alleviate inflammasome-mediated inflammation and RANKL-induced osteoclastic bone destruction in joints alongside its potent suppression of TNF-α and IL-6 production and proteinase-mediated pathological processes in RA
    corecore