13,052 research outputs found

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 12^{12}C+208^{208}Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 12^{12}C+208^{208}Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as α\alpha-particle and 16^{16}O.Comment: 26 pages, 7 figures, submitted to Physical Review

    Mathematics Course Placement Using Holistic Measures: Possibilities for Community College Students.

    Full text link
    Background/Context: Most community colleges across the country use a placement test to determine students’ readiness for college-level coursework, yet these tests are admittedly imperfect instruments. Researchers have documented significant problems stemming from overreliance on placement testing, including placement error and misdiagnosis of remediation needs. They have also described significant consequences of misplacement, which can hinder the educational progression and attainment of community college students. Purpose/Objective/Research Question/Focus of Study: We explore possibilities for placing community college students in mathematics courses using a holistic approach that considers measures beyond placement test scores. This includes academic background measures, such as high school GPA and math courses taken, and indicators of noncognitive constructs, such as motivation, time use, and social support. Setting: The study draws upon administrative data from a large urban community college district in California that serves over 100,000 students each semester. The data enable us to link students’ placement testing results, survey data, background information, and transcript records. Research Design: We first use the supplemental survey data gathered during routine placement testing to conduct predictive exercises that identify severe placement errors under existing placement practices. We then move beyond prediction and evaluate student outcomes in two colleges where noncognitive indicators were directly factored into placement algorithms. Findings/Results: Using high school background information and noncognitive indicators to predict success reveals as many as one quarter of students may be misassigned to their math courses by status quo practices. In our subsequent analysis we find that students placed under a holistic approach that considered noncognitive indicators in addition to placement test scores performed no differently from higher scoring peers in the same course. Conclusions/Recommendations: The findings suggest a holistic approach to mathematics course placement may improve placement accuracy and provide access to higher level mathematics courses for community college students without compromising their likelihood of success

    Formal Context Generation using Dirichlet Distributions

    Full text link
    We suggest an improved way to randomly generate formal contexts based on Dirichlet distributions. For this purpose we investigate the predominant way to generate formal contexts, a coin-tossing model, recapitulate some of its shortcomings and examine its stochastic model. Building up on this we propose our Dirichlet model and develop an algorithm employing this idea. By comparing our generation model to a coin-tossing model we show that our approach is a significant improvement with respect to the variety of contexts generated. Finally, we outline a possible application in null model generation for formal contexts.Comment: 16 pages, 7 figure

    Many-core compiler fuzzing

    Get PDF
    We address the compiler correctness problem for many-core systems through novel applications of fuzz testing to OpenCL compilers. Focusing on two methods from prior work, random differential testing and testing via equivalence modulo inputs (EMI), we present several strategies for random generation of deterministic, communicating OpenCL kernels, and an injection mechanism that allows EMI testing to be applied to kernels that otherwise exhibit little or no dynamically-dead code. We use these methods to conduct a large, controlled testing campaign with respect to 21 OpenCL (device, compiler) configurations, covering a range of CPU, GPU, accelerator, FPGA and emulator implementations. Our study provides independent validation of claims in prior work related to the effectiveness of random differential testing and EMI testing, proposes novel methods for lifting these techniques to the many-core setting and reveals a significant number of OpenCL compiler bugs in commercial implementations

    Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor

    Full text link
    The energy-momentum for a gravitating system can be considered by the tetard teleparalle gauge current in orthonormal frames. Whereas the Einstein pseudotensor used holonomic frames. Tetrad expression itself gives a better result for gravitational energy than Einstein's. Inspired by an idea of Deser, we found a gravitational energy expression which enjoys the positive energy property by combining the tetrad expression and the Einstein pseudotensor, i.e., the connection coefficient has a form appropriate to a suitable intermediate between orthonormal and holonomic frames.Comment: 5 page

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses previously made for elastic scattering and fusion cross section data for the 6^{6}Li+208^{208}Pb system is extended to the 7^{7}Li+208^{208}Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the Continuum Discretized Coupled Channel (CDCC) calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the 7^7Li+208^{208}Pb system with the analysis previously made for the 6^{6}Li+208^{208}Pb system.Comment: 7 figures, submitted to PR

    A modification of the Chen-Nester quasilocal expressions

    Full text link
    Chen and Nester proposed four boundary expressions for the quasilocal quantities using the covariant Hamiltonian formalism. Based on these four expressions, there is a simple generalization that one can consider, so that a two parameter set of boundary expressions can be constructed. Using these modified expressions, a nice result for gravitational energy-momentum can be obtained in holonomic frames.Comment: 11 page

    Pendekatan Keadilan melalui Silaisme dan Standarisasi Pidana (Penyusunan Pola Pidana)

    Get PDF
    “Sila” itself in Pancasila is misinterpreted, making it difficult to be actualized. Sila, properly interpreted as a doctrine/precept supported by freedom is referred as “Silaism”. Silaism needs to be supported by the standardization of sanction, considering within the practice of the criminal law system, sanction occupies a central position. Both the KUHP (Criminal Code) and the laws outside of KUHP regulates delict and sanction as one and both act more individually, where each delict has its own sanction. Sanctions may differ between the KUHP and laws outside of KUHP, thus bringing conflict between norms and disparities. Therefore, a new sanction standardization is needed. To achieve “Justice”, both Silaism and sanction standardization are vital

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:
    • …
    corecore