133 research outputs found

    Monodisperse gas-solid mixtures with intense interphase interaction in two-fluid smoothed particle hydrodynamics

    Get PDF
    Simulations of gas-solid mixtures are used in many scientific and industrial applications. Two-Fluid Smoothed Particle Hydrodynamics (TFSPH) is an approach when gas and solids are simulated with different sets of particles interacting via drag force. Several methods are developed for computing drag force between gas and solid grains for TFSPH. Computationally challenging are simulations of gas-dust mixtures with intense in- tephase interaction, when velocity relaxation time tstop is much smaller than dynamical time of the problem. In explicit schemes the time step Ď„ must be less than tstop, that leads to high computational costs. Moreover, it is known that for stiff problems both grid-based and particle methods may require unaffordably detailed resolution to capture the asymptotical bahaiviour of the solution. To address this problem we developed fast and robust method for computing stiff and mild drag force in gas solid-mixtures based on the ideas of Particle-in-Cell approach. In the paper we compare the results of new and previously developed methods on test problems

    Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis.

    Get PDF
    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 [Formula: see text] at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at -10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process
    • …
    corecore