350 research outputs found

    Two-loop self-energy correction in high-Z hydrogen-like ions

    Get PDF
    A complete evaluation of the two-loop self-energy diagrams to all orders in Z\alpha is presented for the ground state of H-like ions with Z\ge 40.Comment: RevTeX, 5 figures, 1 tabl

    Dual kinetic balance approach to basis set expansions for the Dirac equation

    Full text link
    A new approach to finite basis sets for the Dirac equation is developed. It solves the problem of spurious states and, as a result, improves the convergence properties of basis set calculations. The efficiency of the method is demonstrated for finite basis sets constructed from B splines by calculating the one-loop self-energy correction for a hydrogenlike ion.Comment: 14 pages, 1 tabl

    Self-energy correction to the hyperfine structure splitting of the 1s and 2s states in hydrogenlike ions

    Full text link
    The one-loop self-energy correction to the hyperfine structure splitting of the 1s and 2s states of hydrogenlike ions is calculated both for the point and finite nucleus. The results of the calculation are combined with other corrections to find the ground state hyperfine splitting in lithiumlike ^{209}Bi^{80+} and ^{165}Ho^{64+}.Comment: The table 2 is changed. 6 pages, 1 figure, Late

    Dibaryons as axially symmetric skyrmions

    Full text link
    Dibaryons configurations are studied in the framework of the bound state soliton model. A generalized axially symmetric ansatz is used to determine the soliton background. We show that once the constraints imposed by the symmetries of the lowest energy torus configuration are satisfied all spurious states are removed from the dibaryon spectrum. In particular, we show that the lowest allowed state in the S=2S=-2 channel carries the quantum numbers of the H particle. We find that, within our approximations, this particle is slightly bound in the model. We discuss, however, that vacuum effects neglected in the present calculation are very likely to unbind the H.Comment: 24 pages, LaTeX, TAN-FNT-93-12 (it replaces old version which was truncated

    Evaluation of the self-energy correction to the g-factor of S states in H-like ions

    Full text link
    A detailed description of the numerical procedure is presented for the evaluation of the one-loop self-energy correction to the gg-factor of an electron in the 1s1s and 2s2s states in H-like ions to all orders in ZαZ\alpha.Comment: Final version, December 30, 200

    Relativistic dynamical polarizability of hydrogen-like atoms

    Full text link
    Using the operator representation of the Dirac Coulomb Green function the analytical method in perturbation theory is employed in obtaining solutions of the Dirac equation for a hydrogen-like atom in a time-dependent electric field. The relativistic dynamical polarizability of hydrogen-like atoms is calculated and analysed.Comment: 15 pages, 3 figures (not included, but hard copies are available upon request

    Screened self-energy correction to the 2p3/2-2s transition energy in Li-like ions

    Full text link
    We present an ab initio calculation of the screened self-energy correction for (1s)^2 2p3/2 and (1s)^2 2s states of Li-like ions with nuclear charge numbers in the range Z = 12-100. The evaluation is carried out to all orders in the nuclear-strength parameter Z \alpha. This investigation concludes our calculations of all two-electron QED corrections for the 2p3/2-2s transition energy in Li-like ions and thus considerably improves theoretical predictions for this transition for high-Z ions
    corecore