3,861 research outputs found
The Power-Sharing Event Dataset (PSED): a new dataset on the promises and practices of power-sharing in post-conflict countries
Past research on the relationship between power-sharing arrangements and the recurrence of civil conflict has primarily analyzed the promises of power-sharing stipulated in peace agreements. What happens afterwards, however, has not yet been sufficiently explored. This represents a major research gap, as the actual practices of power-sharing in post-conflict countries are likely to be influential in the possibility of civil conflict recurring. To address this shortcoming, we present a new global dataset on the promises and practices of power-sharing between the government of a state and former rebels in post-conflict countries. The collected data captures if, when and how power-sharing institutions have been promised and/or put into place, and whether they have subsequently been modified or abolished. The dataset encompasses every peace agreement signed after the cessation of a civil conflict in the years between 1989 and 2006, and covers a five-year period after the signature of each of these agreements (unless violence recurred earlier). The unit of analysis is the government–rebel dyad during the post-conflict period and data is recorded in an event data format. A first analysis of the Power-Sharing Event Dataset (PSED) reveals that the effects of the promises of power-sharing on civil conflict recurrence follow a different logic than the effects of their practices. This finding emphasizes the necessity for in-depth analyses of post-conflict situations for which the PSED provides the necessary data
Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study
Peer reviewedPublisher PD
Perspective from a Younger Generation -- The Astro-Spectroscopy of Gisbert Winnewisser
Gisbert Winnewisser's astronomical career was practically coextensive with
the whole development of molecular radio astronomy. Here I would like to pick
out a few of his many contributions, which I, personally, find particularly
interesting and put them in the context of newer results.Comment: 14 pages. (Co)authored by members of the MPIfR (Sub)millimeter
Astronomy Group. To appear in the Proceedings of the 4th
Cologne-Bonn-Zermatt-Symposium "The Dense Interstellar Medium in Galaxies"
eds. S. Pfalzner, C. Kramer, C. Straubmeier, & A. Heithausen (Springer:
Berlin
A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices
Improvement of thermoelectric systems in terms of performance and range of
applications relies on progress in materials science and optimization of device
operation. In this chapter, we focuse on optimization by taking into account
the interaction of the system with its environment. For this purpose, we
consider the illustrative case of a thermoelectric generator coupled to two
temperature baths via heat exchangers characterized by a thermal resistance,
and we analyze its working conditions. Our main message is that both electrical
and thermal impedance matching conditions must be met for optimal device
performance. Our analysis is fundamentally based on linear nonequilibrium
thermodynamics using the force-flux formalism. An outlook on mesoscopic systems
is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito
Koumoto and Takao Mori, Springer Series in Materials Science Volume 182
(2013
Self-Association of an Activating Natural Killer Cell Receptor, KIR2DS1
As a major component of the innate immune system, natural killer cells are responsible for activating the cytolytic killing of certain pathogen-infected or tumor cells. The self-recognition of natural killer cells is achieved in part by the killer cell immunoglobulin-like receptors (KIRs) protein family. In the current study, using a suite of biophysical methods, we investigate the self-association of an activating KIR, KIR2DS1. This KIR is of particular interest because when in the presence of the HLA-Cw6 protein, KIR2DS1 becomes a major risk factor for psoriasis, an autoimmune chronic skin disease. Using circular dichroism spectroscopy, dynamic light scattering, and atomic force microscopy, we reveal that KIR2DS1 self-associates in a well-defined fashion. Our novel results on an activating KIR allow us to suggest a working model for the KIR2DS1- HLA class I molecular mechanism
Simplicial quantum dynamics
Present-day quantum field theory can be regularized by a decomposition into
quantum simplices. This replaces the infinite-dimensional Hilbert space by a
high-dimensional spinor space and singular canonical Lie groups by regular spin
groups. It radically changes the uncertainty principle for small distances.
Gaugeons, including the gravitational, are represented as bound fermion-pairs,
and space-time curvature as a singular organized limit of quantum
non-commutativity.
Keywords: Quantum logic, quantum set theory, quantum gravity, quantum
topology, simplicial quantization.Comment: 25 pages. 1 table. Conference of the International Association for
Relativistic Dynamics, Taiwan, 201
The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication
The origin recognition complex (ORC) marks chromosomal sites as replication origins and is essential for replication initiation. In yeast, ORC also binds to DNA elements called silencers, where its primary function is to recruit silent information regulator (SIR) proteins to establish transcriptional silencing. Indeed, silencers function poorly as chromosomal origins. Several genetic, molecular, and biochemical studies of HMR-E have led to a model proposing that when ORC becomes limiting in the cell (such as in the orc2-1 mutant) only sites that bind ORC tightly (such as HMR-E) remain fully occupied by ORC, while lower affinity sites, including many origins, lose ORC occupancy. Since HMR-E possessed a unique non-replication function, we reasoned that other tight sites might reveal novel functions for ORC on chromosomes. Therefore, we comprehensively determined ORC “affinity” genome-wide by performing an ORC ChIP–on–chip in ORC2 and orc2-1 strains. Here we describe a novel group of orc2-1–resistant ORC–interacting chromosomal sites (ORF–ORC sites) that did not function as replication origins or silencers. Instead, ORF–ORC sites were comprised of protein-coding regions of highly transcribed metabolic genes. In contrast to the ORC–silencer paradigm, transcriptional activation promoted ORC association with these genes. Remarkably, ORF–ORC genes were enriched in proximity to origins of replication and, in several instances, were transcriptionally regulated by these origins. Taken together, these results suggest a surprising connection among ORC, replication origins, and cellular metabolism
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Facilitate Insight by Non-Invasive Brain Stimulation
Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS) to the anterior temporal lobes (ATL). Only 20% of participants solved an insight problem with sham stimulation (control), whereas 3 times as many participants did so (p = 0.011) with cathodal stimulation (decreased excitability) of the left ATL together with anodal stimulation (increased excitability) of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement
- …