2,113 research outputs found

    Numerical simulation of transonic propeller flow using a 3-dimensional small disturbance code employing novel helical coordinates

    Get PDF
    The numerical simulation of three-dimensional transonic flow about propeller blades is discussed. The equations for the unsteady potential flow about propellers is given for an arbitrary coordinate system. From this the small disturbance form of the equation is derived for a new helical coordinate system. The new coordinate system is suited to propeller flow and allows cascade boundary conditions to be applied straightforward. A numerical scheme is employed which solves the steady flow as an asymptotic limit of unsteady flow. Solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an eight bladed cascade. Both high and low advance ratio cases are given which include a lifting case as well as nonlifting cases. The nonlifting cases are compared to solutions from a Euler code

    Rapid consolidation of powdered materials by induction hot pressing

    Get PDF
    A rapid hot press system in which the heat is supplied by RF induction to rapidly consolidate thermoelectric materials is described. Use of RF induction heating enables rapid heating and consolidation of powdered materials over a wide temperature range. Such rapid consolidation in nanomaterials is typically performed by spark plasma sintering (SPS) which can be much more expensive. Details of the system design, instrumentation, and performance using a thermoelectric material as an example are reported. The Seebeck coefficient, electrical resistivity, and thermal diffusivity of thermoelectric PbTe material pressed at an optimized temperature and time in this system are shown to agree with material consolidated under typical consolidation parameters

    Numerical Simulation of Subsonic and Transonic Propeller Flow

    Get PDF
    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code

    Investigation of Atomic Oxygen Erosion of Polyimide Kapton H Exposed to a Plasma Asher Environment

    Get PDF
    Experimental results are presented on the erosion characteristics of the polyimide Kapton H, which serves as a blanket material in solar arrays. This polymer has a number of characteristics that make it a suitable choice for both terrestrial and space applications. In this paper attention is focused on the durability of protected Kapton when exposed to atomic oxygen (AO) in a plasma asher. A strip of 0.025-mm thick Kapton film, coated on both sides with SiO2, was studied during a 1306 hour exposure. The erosion, located at defect sites in the protective coating and measured optically, is described in terms of volume loss as a function of AO fluence. Three simple geometric profiles are used to generate a useful array of cavity shapes to model erosion evolution. These models connect the volume erosion rate to the observed lateral expansion of the developing cavities via their diameters, measured adviacent to the upper and lower protective film, and fitted by least-squares regression to simple power law functions of fluence. The rationale for the choice of models is discussed. It was found that lateral growth in cavity size evolves less than linearly with fluence

    Low effective mass leading to high thermoelectric performance

    Get PDF
    High Seebeck coefficient by creating large density-of-states effective mass through either electronic structure modification or manipulating nanostructures is commonly considered as a route to advanced thermoelectrics. However, large density-of-state due to flat bands leads to large transport effective mass, which results in a simultaneous decrease of mobility. In fact, the net effect of such a high effective mass is a lower thermoelectric figure of merit, zT, when the carriers are predominantly scattered by phonons according to the deformation potential theory of Bardeen–Shockley. We demonstrate that the beneficial effect of light effective mass contributes to high zT in n-type thermoelectric PbTe, where doping and temperature can be used to tune the effective mass. This clear demonstration of the deformation potential theory to thermoelectrics shows that the guiding principle for band structure engineering should be low effective mass along the transport direction

    A high temperature apparatus for measurement of the Seebeck coefficient

    Get PDF
    A high temperature Seebeck coefficient measurement apparatus with various features to minimize typical sources of error is designed and built. Common sources of temperature and voltage measurement error are described and principles to overcome these are proposed. With these guiding principles, a high temperature Seebeck measurement apparatus with a uniaxial 4-point contact geometry is designed to operate from room temperature to over 1200 K. This instrument design is simple to operate, and suitable for bulk samples with a broad range of physical types and shapes

    Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride

    Get PDF
    The complexity of the valence band structure in p-type PbTe has been shown to enable a significant enhancement of the average thermoelectric figure of merit (zT) when heavily doped with Na. It has also been shown that when PbTe is nanostructured with large nanometer sized Ag_2Te precipitates there is an enhancement of zT due to phonon scattering at the interfaces. The enhancement in zT resulting from these two mechanisms is of similar magnitude but, in principle, decoupled from one another. This work experimentally demonstrates a successful combination of the complexity in the valence band structure with the addition of nanostructuring to create a high performance thermoelectric material. These effects lead to a high zT over a wide temperature range with peak zT > 1.5 at T > 650 K in Na-doped PbTe/Ag_2Te. This high average zT produces 30% higher efficiency (300–750 K) than pure Na-doped PbTe because of the nanostructures, while the complex valence band structure leads to twice the efficiency as the related n-type La-doped PbTe/Ag_2Te without such band structure complexity

    Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe

    Get PDF
    PbSe is a surprisingly good thermoelectric material due, in part, to its low thermal conductivity that had been overestimated in earlier measurements. The thermoelectric figure of merit, zT, can exceed 1 at high temperatures in both p-type and n-type PbSe, similar to that found in PbTe. While the p-type lead chalcogenides (PbSe and PbTe) benefit from the high valley degeneracy (12 or more at high temperature) of the valence band, the n-type versions are limited to a valley degeneracy of 4 in the conduction band. Yet the n-type lead chalcogenides achieve a zT nearly as high as the p-type lead chalcogenides. This effect can be attributed to the weaker electron–phonon coupling (lower deformation potential coefficient) in the conduction band as compared with that in the valence band, which leads to higher mobility of electrons compared to that of holes. This study of PbSe illustrates the importance of the deformation potential coefficient of the charge-carrying band as one of several key parameters to consider for band structure engineering and the search for high performance thermoelectric materials

    Dynamics of local grid manipulations for internal flow problems

    Get PDF
    The control point method of algebraic grid generation is briefly reviewed. The review proceeds from the general statement of the method in 2-D unencumbered by detailed mathematical formulation. The method is supported by an introspective discussion which provides the basis for confidence in the approach. The more complex 3-D formulation is then presented as a natural generalization. Application of the method is carried out through 2-D examples which demonstrate the technique
    • …
    corecore