6 research outputs found

    Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice.

    No full text
    Polyunsaturated fats are energy substrates and precursors to the biosynthesis of lipid mediators of cellular processes. Adipose tissue not only provides energy storage, but influences whole-body energy metabolism through endocrine functions. How diet influences adipose-lipid mediator balance may have broad impacts on energy metabolism. To determine how dietary lipid sources modulate brown and white adipose tissue and plasma lipid mediators, mice were fed low-fat (15% kcal fat) isocaloric diets, containing either palm oil (POLF) or linoleate-rich safflower oil (SOLF). Baseline and post body weight, adiposity, and 2-week and post fasting blood glucose were measured and lipid mediators were profiled in plasma, and inguinal white and interscapular brown adipose tissues. We identified over 30 species of altered lipid mediators between diets and found that these changes were unique to each tissue. We identified changes to lipid mediators with known functional roles in the regulation of adipose tissue expansion and function, and found that there was a relationship between the average fold difference in lipid mediators between brown adipose tissue and plasma in mice consuming the SOLF diet. Our findings emphasize that even with a low-fat diet, dietary fat quality has a profound effect on lipid mediator profiles in adipose tissues and plasma

    Linoleic Acid-Enriched Diet Increases Mitochondrial Tetralinoleoyl Cardiolipin, OXPHOS Protein Levels, and Uncoupling in Interscapular Brown Adipose Tissue during Diet-Induced Weight Gain

    No full text
    Cardiolipin (CL) is a phospholipid unique to the inner mitochondrial membrane that supports respiratory chain structure and function and is demonstrated to be influenced by types of dietary fats. However, the influence of dietary fat on CL species and how this best supports mitochondrial function in brown adipose tissue (BAT), which exhibits an alternative method of energy utilization through the uncoupling of the mitochondrial proton gradient to generate heat, is not well understood. Therefore, the aim of our study was to evaluate metabolic parameters, interscapular BAT CL quantity, species, and mitochondrial function in mice consuming isocaloric moderate-fat diets with either lard (LD; similar fatty acid profile to western dietary patterns) or safflower oil high in linoleic acid (SO), shown to be metabolically favorable in large clinical meta-analyses. Mice fed the SO diet exhibited decreased adiposity, improved insulin sensitivity, and enrichment of LA-containing CL species in BAT CL. Furthermore, mice fed the SO diet exhibit higher levels of OXPHOS complex proteins and increased oxygen consumption in BAT. Our findings demonstrate that dietary consumption of LA-rich oil improves metabolic parameters, increases LA-containing CL species, and improves BAT function when compared to the consumption of lard in mice during diet-induced weight gain

    Skeletal muscle adaptations in patients with lung cancer: Longitudinal observations from the whole body to cellular level

    No full text
    Abstract Background Cancer and its treatment can adversely affect skeletal muscle, impacting physical function, treatment response and survival. No studies, however, have comprehensively characterized these muscle adaptations longitudinally in human patients at the cellular level. Methods We examined skeletal muscle size and function from the whole body to the sub‐cellular level in 11 patients with non‐small cell lung cancer (NSCLC; 6 male/5 female, mean age 58 ± 3 years) studied over a 2‐month observation period starting during their first cycle of standard of care cancer treatment and in 11 age‐ and sex‐matched healthy controls (HC) without a current or past history of cancer. Biopsies of the vastus lateralis were performed to assess muscle fibre size, contractility and mitochondrial content, along with assessments of physical function, whole muscle size and function, and circulating cytokines. Results Body weight, composition and thigh muscle area and density were unaltered over time in patients with NSCLC, while muscle density was lower in patients with NSCLC versus HC (P = 0.03). Skeletal muscle fibre size decreased by 18% over time in patients (all P = 0.02) and was lower than HC (P = 0.02). Mitochondrial fractional area and density did not change over time in patients, but fractional area was lower in patients with NSCLC compared with HC (subsarcolemmal, P = 0.04; intermyofibrillar, P = 0.03). Patients with NSCLC had higher plasma concentrations of IL‐6 (HC 1.40 ± 0.50; NSCLC 4.71 ± 4.22; P < 0.01), GDF‐15 (HC 569 ± 166; NSCLC 2071 ± 1168; P < 0.01) and IL‐8/CXCL8 (HC 4.9 ± 1.8; NSCLC 10.1 ± 6.0; P = 0.02) compared with HC, but there were no changes in inflammatory markers in patients with NSCLC over time. No changes were observed in markers of satellite cell activation or DNA damage in patients and no group differences were noted with HC. Whole‐muscle strength was preserved over time in patients with NSCLC coincident with improved single fibre contractility. Conclusions This study is the first to comprehensively examine longitudinal alterations in skeletal muscle fibre size and function in patients with NSCLC and suggests that muscle fibre atrophy occurs during cancer treatment despite weight stability and no changes in conventional clinical measurements of whole body or thigh muscle size over this period

    Potential Cardioprotective Effects and Lipid Mediator Differences in Long-Chain Omega-3 Polyunsaturated Fatty Acid Supplemented Mice Given Chemotherapy.

    No full text
    Many commonly used chemotherapies induce mitochondrial dysfunction in cardiac muscle, which leads to cardiotoxicity and heart failure later in life. Dietary long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have demonstrated cardioprotective function in non-chemotherapy models of heart failure, potentially through the formation of LC n-3 PUFA-derived bioactive lipid metabolites. However, it is unknown whether dietary supplementation with LC n-3 PUFA can protect against chemotherapy-induced cardiotoxicity. To test this, 36 female ovariectomized C57BL/6J mice were randomized in a two-by-two factorial design to either a low (0 g/kg EPA + DHA) or high (12.2 g/kg EPA + DHA) LC n-3 PUFA diet, and received either two vehicle or two chemotherapy (9 mg/kg anthracycline + 90 mg/kg cyclophosphamide) tail vein injections separated by two weeks. Body weight and food intake were measured as well as heart gene expression and fatty acid composition. Heart mitochondria were isolated using differential centrifugation. Mitochondrial isolate oxylipin and N-acylethanolamide levels were measured by mass spectrometry after alkaline hydrolysis. LC n-3 PUFA supplementation attenuated some chemotherapy-induced differences (Myh7, Col3a1) in heart gene expression, and significantly altered various lipid species in cardiac mitochondrial preparations including several epoxy fatty acids [17(18)-EpETE] and N-acylethanolamines (arachidonoylethanolamine, AEA), suggesting a possible functional link between heart lipids and cardiotoxicity

    Potential Cardioprotective Effects and Lipid Mediator Differences in Long-Chain Omega-3 Polyunsaturated Fatty Acid Supplemented Mice Given Chemotherapy

    No full text
    Many commonly used chemotherapies induce mitochondrial dysfunction in cardiac muscle, which leads to cardiotoxicity and heart failure later in life. Dietary long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) have demonstrated cardioprotective function in non-chemotherapy models of heart failure, potentially through the formation of LC n-3 PUFA-derived bioactive lipid metabolites. However, it is unknown whether dietary supplementation with LC n-3 PUFA can protect against chemotherapy-induced cardiotoxicity. To test this, 36 female ovariectomized C57BL/6J mice were randomized in a two-by-two factorial design to either a low (0 g/kg EPA + DHA) or high (12.2 g/kg EPA + DHA) LC n-3 PUFA diet, and received either two vehicle or two chemotherapy (9 mg/kg anthracycline + 90 mg/kg cyclophosphamide) tail vein injections separated by two weeks. Body weight and food intake were measured as well as heart gene expression and fatty acid composition. Heart mitochondria were isolated using differential centrifugation. Mitochondrial isolate oxylipin and N-acylethanolamide levels were measured by mass spectrometry after alkaline hydrolysis. LC n-3 PUFA supplementation attenuated some chemotherapy-induced differences (Myh7, Col3a1) in heart gene expression, and significantly altered various lipid species in cardiac mitochondrial preparations including several epoxy fatty acids [17(18)-EpETE] and N-acylethanolamines (arachidonoylethanolamine, AEA), suggesting a possible functional link between heart lipids and cardiotoxicity
    corecore