5,286 research outputs found

    Vortex-lattice melting in a one-dimensional optical lattice

    Full text link
    We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the small number of particles in the pancake Bose-Einstein condensates at every site of the optical lattice, finite-size effects become very important. Therefore, the fluctuations in the vortex positions are inhomogeneous and the melting of the lattice occurs from the outside inwards. Tunneling between neighbouring pancakes substantially reduces the inhomogeneity as well as the size of the fluctuations.Comment: 4 pages, 4 figure

    Ultracold Superstrings in atomic boson-fermion mixtures

    Full text link
    We propose a setup with ultracold atomic gases that can be used to make a nonrelativistic superstring in four spacetime dimensions. In particular, we consider for the creation of the superstring a fermionic atomic gas that is trapped in the core of a vortex in a Bose-Einstein condensate. We explain the required tuning of experimental parameters to achieve supersymmetry between the fermionic atoms and the bosonic modes describing the oscillations in the vortex position. Furthermore, we discuss the experimental consequences of supersymmetry.Comment: 4 pages, 4 figures; published versio

    Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients

    Get PDF
    Objective: To explore possible functional effects of the Handmaster in tetraplegia and to determine suitable patients for the system. \ud \ud Patients: Patients with a cervical spinal cord injury between C4 and C6, motor group 0-3. Important selection criteria were a stable clinical situation and the absence of other medical problems and complications. \ud \ud Design: Ten patients were consecutively selected from the in- and outpatient department of a large rehabilitation hospital in The Netherlands. Each patient was fitted with a Handmaster by a qualified therapist and underwent muscle strength and functional training for at least 2 months. \ud \ud Methods: Functional evaluation comprised the performance of a defined set of tasks and at least one additional task as selected by patients themselves. Tasks were performed both with and without the Handmaster. Finally, patients were asked for their opinion on Handmaster use as well as their willingness to future use. \ud \ud Results: In six patients a stimulated grasp and release with either one or both grasp modes (key- and palmar pinch) of the Handmaster was possible. Four patients could perform the set of tasks using the Handmaster, while they were not able to do so without the Handmaster. Eventually, one patient continued using the Handmaster during ADL at home. \ud \ud Conclusion: The Handmaster has a functional benefit in a limited group of patients with a C5 SCI motor group 0 and 1. Suitable patients should have sufficient shoulder and biceps function combined with absent or weak wrist extensors. Though functional use was the main reason for using the Handmaster, this case series showed that therapeutic use can also be considered. \ud \u

    Online Meta-learning by Parallel Algorithm Competition

    Full text link
    The efficiency of reinforcement learning algorithms depends critically on a few meta-parameters that modulates the learning updates and the trade-off between exploration and exploitation. The adaptation of the meta-parameters is an open question in reinforcement learning, which arguably has become more of an issue recently with the success of deep reinforcement learning in high-dimensional state spaces. The long learning times in domains such as Atari 2600 video games makes it not feasible to perform comprehensive searches of appropriate meta-parameter values. We propose the Online Meta-learning by Parallel Algorithm Competition (OMPAC) method. In the OMPAC method, several instances of a reinforcement learning algorithm are run in parallel with small differences in the initial values of the meta-parameters. After a fixed number of episodes, the instances are selected based on their performance in the task at hand. Before continuing the learning, Gaussian noise is added to the meta-parameters with a predefined probability. We validate the OMPAC method by improving the state-of-the-art results in stochastic SZ-Tetris and in standard Tetris with a smaller, 10Ɨ\times10, board, by 31% and 84%, respectively, and by improving the results for deep Sarsa(Ī»\lambda) agents in three Atari 2600 games by 62% or more. The experiments also show the ability of the OMPAC method to adapt the meta-parameters according to the learning progress in different tasks.Comment: 15 pages, 10 figures. arXiv admin note: text overlap with arXiv:1702.0311

    Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science

    Full text link
    As the field of data science continues to grow, there will be an ever-increasing demand for tools that make machine learning accessible to non-experts. In this paper, we introduce the concept of tree-based pipeline optimization for automating one of the most tedious parts of machine learning---pipeline design. We implement an open source Tree-based Pipeline Optimization Tool (TPOT) in Python and demonstrate its effectiveness on a series of simulated and real-world benchmark data sets. In particular, we show that TPOT can design machine learning pipelines that provide a significant improvement over a basic machine learning analysis while requiring little to no input nor prior knowledge from the user. We also address the tendency for TPOT to design overly complex pipelines by integrating Pareto optimization, which produces compact pipelines without sacrificing classification accuracy. As such, this work represents an important step toward fully automating machine learning pipeline design.Comment: 8 pages, 5 figures, preprint to appear in GECCO 2016, edits not yet made from reviewer comment

    Magnetically Stabilized Nematic Order I: Three-Dimensional Bipartite Optical Lattices

    Full text link
    We study magnetically stabilized nematic order for spin-one bosons in optical lattices. We show that the Zeeman field-driven quantum transitions between non-nematic Mott states and quantum spin nematic states in the weak hopping limit are in the universality class of the ferromagnetic XXZ (S=1/2) spin model. We further discuss these transitions as condensation of interacting magnons. The development of O(2) nematic order when external fields are applied corresponds to condensation of magnons, which breaks a U(1) symmetry. Microscopically, this results from a coherent superposition of two non-nematic states at each individual site. Nematic order and spin wave excitations around critical points are studied and critical behaviors are obtained in a dilute gas approximation. We also find that spin singlet states are unstable with respect to quadratic Zeeman effects and Ising nematic order appears in the presence of any finite quadratic Zeeman coupling. All discussions are carried out for states in three dimensional bipartite lattices.Comment: 16 pages, 3 figure

    Video2vec Embeddings Recognize Events when Examples are Scarce

    Get PDF

    Video2vec Embeddings Recognize Events when Examples are Scarce

    Get PDF

    Symbiosis between the TRECVid benchmark and video libraries at the Netherlands Institute for Sound and Vision

    Get PDF
    Audiovisual archives are investing in large-scale digitisation efforts of their analogue holdings and, in parallel, ingesting an ever-increasing amount of born- digital files in their digital storage facilities. Digitisation opens up new access paradigms and boosted re-use of audiovisual content. Query-log analyses show the shortcomings of manual annotation, therefore archives are complementing these annotations by developing novel search engines that automatically extract information from both audio and the visual tracks. Over the past few years, the TRECVid benchmark has developed a novel relationship with the Netherlands Institute of Sound and Vision (NISV) which goes beyond the NISV just providing data and use cases to TRECVid. Prototype and demonstrator systems developed as part of TRECVid are set to become a key driver in improving the quality of search engines at the NISV and will ultimately help other audiovisual archives to offer more efficient and more fine-grained access to their collections. This paper reports the experiences of NISV in leveraging the activities of the TRECVid benchmark
    • ā€¦
    corecore