5,095 research outputs found

    Search for b→u transitions in B±→[K∓π±π0]DK± decays

    Full text link
    We present a study of the decays B±→DK± with D mesons reconstructed in the K+π-π0 or K-π+π0 final states, where D indicates a D0 or a D̅ 0 meson. Using a sample of 474×106 BB̅ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we measure the ratios R±≥Γ(B±→[K∓π±π0]DK±)/Γ(B±→[K±π∓π0]DK±). We obtain R+=(5-10+12(stat)-4+2(syst))×10-3 and R-=(12-10+12(stat)-5+3(syst))×10-3, from which we extract the upper limits at 90% probability: R+<23×10-3 and R-<29×10-3. Using these measurements, we obtain an upper limit for the ratio rB of the magnitudes of the b→u and b→c amplitudes rB<0.13 at 90% probability

    Action Intentions, Predictive Processing, and Mind Reading: Turning Goalkeepers Into Penalty Killers

    Get PDF
    The key to action control is one’s ability to adequately predict the consequences of one’s actions. Predictive processing theories assume that forward models enable rapid “preplay” to assess the match between predicted and intended action effects. Here we propose the novel hypothesis that “reading” another’s action intentions requires a rich forward model of that agent’s action. Such a forward model can be obtained and enriched through learning by either practice or simulation. Based on this notion, we ran a series of studies on soccer goalkeepers and novices, who predicted the intended direction of penalties being kicked at them in a computerized penalty-reading task. In line with hypotheses, extensive practice in penalty kicking improved performance in penalty reading among goalkeepers who had extensive prior experience in penalty blocking but not in penalty kicking. A robust benefit in penalty reading did not result from practice in kinesthetic motor imagery of penalty kicking in novice participants. To test whether goalkeepers actually use such penalty-kicking imagery in penalty reading, we trained a machine-learning classifier on multivariate fMRI activity patterns to distinguish motor-imagery-related from attention-related strategies during a penalty-imagery training task. We then applied that classifier to fMRI data related to a separate penalty-reading task and showed that 2/3 of all correctly read penalty kicks were classified as engaging the motor-imagery circuit rather than merely the attention circuit. This study provides initial evidence that, in order to read our opponent’s action intention, it helps to observe their action kinematics, and use our own forward model to predict the sensory consequences of “our” penalty kick if we were to produce these action kinematics ourselves. In sum, it takes practice as a penalty kicker to become a penalty killer

    Rigorous mean-field dynamics of lattice bosons: Quenches from the Mott insulator

    Get PDF
    We provide a rigorous derivation of Gutzwiller mean-field dynamics for lattice bosons, showing that it is exact on fully connected lattices. We apply this formalism to quenches in the interaction parameter from the Mott insulator to the superfluid state. Although within mean-field the Mott insulator is a steady state, we show that a dynamical critical interaction UdU_d exists, such that for final interaction parameter Uf>UdU_f>U_d the Mott insulator is exponentially unstable towards emerging long-range superfluid order, whereas for Uf<UdU_f<U_d the Mott insulating state is stable. We discuss the implications of this prediction for finite-dimensional systems.Comment: 6 pages, 3 figures, published versio

    Large-Scale Sleep Condition Analysis Using Selfies from Social Media

    Full text link
    Sleep condition is closely related to an individual's health. Poor sleep conditions such as sleep disorder and sleep deprivation affect one's daily performance, and may also cause many chronic diseases. Many efforts have been devoted to monitoring people's sleep conditions. However, traditional methodologies require sophisticated equipment and consume a significant amount of time. In this paper, we attempt to develop a novel way to predict individual's sleep condition via scrutinizing facial cues as doctors would. Rather than measuring the sleep condition directly, we measure the sleep-deprived fatigue which indirectly reflects the sleep condition. Our method can predict a sleep-deprived fatigue rate based on a selfie provided by a subject. This rate is used to indicate the sleep condition. To gain deeper insights of human sleep conditions, we collected around 100,000 faces from selfies posted on Twitter and Instagram, and identified their age, gender, and race using automatic algorithms. Next, we investigated the sleep condition distributions with respect to age, gender, and race. Our study suggests among the age groups, fatigue percentage of the 0-20 youth and adolescent group is the highest, implying that poor sleep condition is more prevalent in this age group. For gender, the fatigue percentage of females is higher than that of males, implying that more females are suffering from sleep issues than males. Among ethnic groups, the fatigue percentage in Caucasian is the highest followed by Asian and African American.Comment: 2017 International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction and Behavior Representation in Modeling and Simulation (SBP-BRiMS'17

    Genetical Genomics Reveals Large Scale Genotype-By-Environment Interactions in Arabidopsis thaliana

    Get PDF
    One of the major goals of quantitative genetics is to unravel the complex interactions between molecular genetic factors and the environment. The effects of these genotype-by-environment interactions also affect and cause variation in gene expression. The regulatory loci responsible for this variation can be found by genetical genomics that involves the mapping of quantitative trait loci (QTLs) for gene expression traits also called expression-QTL (eQTLs). Most genetical genomics experiments published so far, are performed in a single environment and hence do not allow investigation of the role of genotype-by-environment interactions. Furthermore, most studies have been done in a steady state environment leading to acclimated expression patterns. However a response to the environment or change therein can be highly plastic and possibly lead to more and larger differences between genotypes. Here we present a genetical genomics study on 120 Arabidopsis thaliana, Landsberg erecta × Cape Verde Islands, recombinant inbred lines (RILs) in active response to the environment by treating them with 3 h of shade. The results of this experiment are compared to a previous study on seedlings of the same RILs from a steady state environment. The combination of two highly different conditions but exactly the same RILs with a fixed genetic variation showed the large role of genotype-by-environment interactions on gene expression levels. We found environment-dependent hotspots of transcript regulation. The major hotspot was confirmed by the expression profile of a near isogenic line. Our combined analysis leads us to propose CSN5A, a COP9 signalosome component, as a candidate regulator for the gene expression response to shade

    Exhaustive and Efficient Constraint Propagation: A Semi-Supervised Learning Perspective and Its Applications

    Full text link
    This paper presents a novel pairwise constraint propagation approach by decomposing the challenging constraint propagation problem into a set of independent semi-supervised learning subproblems which can be solved in quadratic time using label propagation based on k-nearest neighbor graphs. Considering that this time cost is proportional to the number of all possible pairwise constraints, our approach actually provides an efficient solution for exhaustively propagating pairwise constraints throughout the entire dataset. The resulting exhaustive set of propagated pairwise constraints are further used to adjust the similarity matrix for constrained spectral clustering. Other than the traditional constraint propagation on single-source data, our approach is also extended to more challenging constraint propagation on multi-source data where each pairwise constraint is defined over a pair of data points from different sources. This multi-source constraint propagation has an important application to cross-modal multimedia retrieval. Extensive results have shown the superior performance of our approach.Comment: The short version of this paper appears as oral paper in ECCV 201

    A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits

    Get PDF
    Background The nematode Caenorhabditis elegans has been extensively used to explore the relationships between complex traits, genotypes, and environments. Complex traits can vary across different genotypes of a species, and the genetic regulators of trait variation can be mapped on the genome using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) derived from genetically and phenotypically divergent parents. Most RILs have been derived from crossing two parents from globally distant locations. However, the genetic diversity between local C. elegans populations can be as diverse as between global populations and could thus provide means of identifying genetic variation associated with complex traits relevant on a broader scale. Results To investigate the effect of local genetic variation on heritable traits, we developed a new RIL population derived from 4 parental wild isolates collected from 2 closely located sites in France: Orsay and Santeuil. We crossed these 4 genetically diverse parental isolates to generate a population of 200 multi-parental RILs and used RNA-seq to obtain sequence polymorphisms identifying almost 9000 SNPs variable between the 4 genotypes with an average spacing of 11 kb, doubling the mapping resolution relative to currently available RIL panels for many loci. The SNPs were used to construct a genetic map to facilitate QTL analysis. We measured life history traits such as lifespan, stress resistance, developmental speed, and population growth in different environments, and found substantial variation for most traits. We detected multiple QTLs for most traits, including novel QTLs not found in previous QTL analysis, including those for lifespan and pathogen responses. This shows that recombining genetic variation across C. elegans populations that are in geographical close proximity provides ample variation for QTL mapping. Conclusion Taken together, we show that using more parents than the classical two parental genotypes to construct a RIL population facilitates the detection of QTLs and that the use of wild isolates facilitates the detection of QTLs. The use of multi-parent RIL populations can further enhance our understanding of local adaptation and life history trade-offs

    Evaluating Multimedia Features and Fusion for Example-Based Event Detection

    Get PDF
    Multimedia event detection (MED) is a challenging problem because of the heterogeneous content and variable quality found in large collections of Internet videos. To study the value of multimedia features and fusion for representing and learning events from a set of example video clips, we created SESAME, a system for video SEarch with Speed and Accuracy for Multimedia Events. SESAME includes multiple bag-of-words event classifiers based on single data types: low-level visual, motion, and audio features; high-level semantic visual concepts; and automatic speech recognition. Event detection performance was evaluated for each event classifier. The performance of low-level visual and motion features was improved by the use of difference coding. The accuracy of the visual concepts was nearly as strong as that of the low-level visual features. Experiments with a number of fusion methods for combining the event detection scores from these classifiers revealed that simple fusion methods, such as arithmetic mean, perform as well as or better than other, more complex fusion methods. SESAME’s performance in the 2012 TRECVID MED evaluation was one of the best reported

    Relativistic quantum effects of Dirac particles simulated by ultracold atoms

    Full text link
    Quantum simulation is a powerful tool to study a variety of problems in physics, ranging from high-energy physics to condensed-matter physics. In this article, we review the recent theoretical and experimental progress in quantum simulation of Dirac equation with tunable parameters by using ultracold neutral atoms trapped in optical lattices or subject to light-induced synthetic gauge fields. The effective theories for the quasiparticles become relativistic under certain conditions in these systems, making them ideal platforms for studying the exotic relativistic effects. We focus on the realization of one, two, and three dimensional Dirac equations as well as the detection of some relativistic effects, including particularly the well-known Zitterbewegung effect and Klein tunneling. The realization of quantum anomalous Hall effects is also briefly discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on Quantum Dynamics of Ultracold Atom
    • 

    corecore