2,886 research outputs found

    Competing periodicities in fractionally filled one-dimensional bands

    Full text link
    We present a variable temperature Scanning Tunneling Microscopy and Spectroscopy (STM and STS) study of the Si(553)-Au atomic chain reconstruction. This quasi one-dimensional (1D) system undergoes at least two charge density wave (CDW) transitions at low temperature, which can be attributed to electronic instabilities in the fractionally-filled 1D bands of the high-symmetry phase. Upon cooling, Si(553)-Au first undergoes a single-band Peierls distortion, resulting in period doubling along the imaged chains. This Peierls state is ultimately overcome by a competing tripleperiod CDW, which in turn is accompanied by a x2 periodicity in between the chains. These locked-in periodicities indicate small charge transfer between the nearly half-filled and quarter-filled 1D bands. The presence and the mobility of atomic scale dislocations in the x3 CDW state indicates the possibility of manipulating phase solitons carrying a (spin,charge) of (1/2,+-e/3) or (0,+-2e/3).Comment: submitted, accepted for publication in Phys. Rev. Let

    Formation of atom wires on vicinal silicon

    Full text link
    The formation of atomic wires via pseudomorphic step-edge decoration on vicinal silicon surfaces has been analyzed for Ga on the Si(112) surface using Scanning Tunneling Microscopy and Density Functional Theory calculations. Based on a chemical potential analysis involving more than thirty candidate structures and considering various fabrication procedures, it is concluded that pseudomorphic growth on stepped Si(112), both under equilibrium and non-equilibrium conditions, must favor formation of Ga zig-zag chains rather than linear atom chains. The surface is non-metallic and presents quasi-one dimensional character in the lowest conduction band.Comment: submitte

    The statistical mechanics of networks

    Full text link
    We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We give exact solutions of models within this class that incorporate arbitrary degree distributions and arbitrary but independent edge probabilities. We also discuss some more complex examples with correlated edges that can be solved approximately or exactly by adapting various familiar methods, including mean-field theory, perturbation theory, and saddle-point expansions.Comment: 15 pages, 4 figure

    Solution of the 2-star model of a network

    Full text link
    The p-star model or exponential random graph is among the oldest and best-known of network models. Here we give an analytic solution for the particular case of the 2-star model, which is one of the most fundamental of exponential random graphs. We derive expressions for a number of quantities of interest in the model and show that the degenerate region of the parameter space observed in computer simulations is a spontaneously symmetry broken phase separated from the normal phase of the model by a conventional continuous phase transition.Comment: 5 pages, 3 figure

    An API for accessing the data category registry

    Get PDF
    International audienceCentral Ontologies are increasingly important to manage interoperability between different types of language resources. This was the reason for ISO to set up a new committee ISO TC37/SC4 taking care of language resource management issues. Central to the work of this committee is the definition of a framework for a central registry of data categories that are important in the domain of language resources. This paper describes an application programming interface that was designed to request services from this data category registry. The DCR is operational and the described API has already been tested from a lexicon application

    Critical phenomena in exponential random graphs

    Full text link
    The exponential family of random graphs is one of the most promising class of network models. Dependence between the random edges is defined through certain finite subgraphs, analogous to the use of potential energy to provide dependence between particle states in a grand canonical ensemble of statistical physics. By adjusting the specific values of these subgraph densities, one can analyze the influence of various local features on the global structure of the network. Loosely put, a phase transition occurs when a singularity arises in the limiting free energy density, as it is the generating function for the limiting expectations of all thermodynamic observables. We derive the full phase diagram for a large family of 3-parameter exponential random graph models with attraction and show that they all consist of a first order surface phase transition bordered by a second order critical curve.Comment: 14 pages, 8 figure

    Ga-induced atom wire formation and passivation of stepped Si(112)

    Full text link
    We present an in-depth analysis of the atomic and electronic structure of the quasi one-dimensional (1D) surface reconstruction of Ga on Si(112) based on Scanning Tunneling Microscopy and Spectroscopy (STM and STS), Rutherford Backscattering Spectrometry (RBS) and Density Functional Theory (DFT) calculations. A new structural model of the Si(112)6 x 1-Ga surface is inferred. It consists of Ga zig-zag chains that are intersected by quasi-periodic vacancy lines or misfit dislocations. The experimentally observed meandering of the vacancy lines is caused by the co-existence of competing 6 x 1 and 5 x 1 unit cells and by the orientational disorder of symmetry breaking Si-Ga dimers inside the vacancy lines. The Ga atoms are fully coordinated, and the surface is chemically passivated. STS data reveal a semiconducting surface and show excellent agreement with calculated Local Density of States (LDOS) and STS curves. The energy gain obtained by fully passivating the surface calls the idea of step-edge decoration as a viable growth method toward 1D metallic structures into question.Comment: Submitted, 13 pages, accepted in Phys. Rev. B, notational change in Fig.
    • …
    corecore