11 research outputs found

    Prostaglandin F2α regulates mitochondrial dynamics and mitophagy in the bovine corpus luteum

    Get PDF
    Prostaglandins are arachidonic acid-derived lipid mediators involved in numerous physiological and pathological processes. PGF2α analogues are therapeutically used for regulating mammalian reproductive cycles and blood pressure, inducing term labor, and treating ocular disorders. PGF2α exerts effects via activation of calcium and PKC signaling, however, little is known about the cellular events imposed by PGF2α signaling. Here, we explored the early effects of PGF2α on mitochondrial dynamics and mitophagy in the bovine corpus luteum employing relevant and well characterized in vivo and in vitro approaches. We identified PKC/ERK and AMPK as critical protein kinases essential for activation of mitochondrial fission proteins, DRP1 and MFF. Furthermore, we report that PGF2α elicits increased intracellular reactive oxygen species and promotes receptormediated activation of PINK–Parkin mitophagy. These findings place the mitochondrium as a novel target in response to luteolytic mediator, PGF2α. Understanding intracellular processes occurring during early luteolysis may serve as a target for improving fertility

    Yearling bulls have reduced sperm concentration and increased seminal plasma interleukin-8 after a 28-day breeding season

    Get PDF
    We hypothesized that yearling bulls selected for a 28-d breeding season would have reduced sperm concentrations and morphology, and have increased seminal plasma concentrations of pro-inflammatory cytokine interleukin-8 (IL-8). Yearling bulls were selected based on a breeding soundness examination (BSE) at approximately 415 d of age and contained at least 750 million sperm in the ejaculate, with 12 bulls randomly selected for breeding (BREEDERS) and 12 bulls not selected for breeding (NON-BREEDERS). After a 28-d breeding period, all bulls underwent a BSE. Plasma and seminal plasma were collected at each time point for analysis. Data were analysed utilizing either the MIXED or GLIMMIX procedures with repeated measures in SAS with breeding group, age and the interaction as fixed effects. Sperm concentration per ml of ejaculate was reduced (p \u3c .05) in yearling bulls used for breeding compared with those not used for breeding at the end of the breeding season. Seminal plasma IL-8 concentrations in yearling bulls used for breeding were increased (p \u3c .05) after the breeding season compared with bulls not used for breeding. Taken together, yearling bulls selected for a 28-d breeding season have reduced sperm production per ml of an ejaculate and increased inflammatory response in the seminal plasma that can lead to impaired breeding response if they are to be used for more than 30 d of breeding

    Transcriptomic data of bovine ovarian granulosa cells of control and High A4 cows

    Get PDF
    Microarray analysis using Affymetrix Bovine GeneChip 1.0 ST Array to determine RNA expression analysis was performed on somatic granulosa cells from two different groups of cows classified based on androstenedione concentration within the follicular fluid (Control vs High A4) of estrogen-active dominant follicles. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE97017 - RNA Expression Data from Bovine Ovarian Granulosa Cells from High or Low Androgen-Content Follicles). Subsequent ANOVA determined genes that were enriched (≥ 1.5 fold more) or decreased (≤ 1.5 fold less) in the High A4 granulosa cells compared to Control granulosa cells and analyzed filtered datasets of these differentially expressed genes are presented as tables. MicroRNAs that are differentially expressed in Control and High A4 granulosa cells are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values are shown as a figure. Ingenuity Pathway Analysis determined upstream regulators of differently expressed genes as presented in a table. These data have been further analyzed and interpreted in the companion article “A High-Androgen Microenvironment Inhibits Granulosa Cell Proliferation and Alters Cell Identity.

    Greater numbers of antral follicles in the ovary are associated with increased concentrations of glucose in uterine luminal fluid of beef heifers

    Get PDF
    Increased antral follicles are associated with greater fertility and a uterine environment that is more supportive of early embryonic development in beef heifers. Glucose is a primary energy source for embryos, and glucose concentrations are elevated in uterine luminal fluid (ULF) of pregnant heifers. We hypothesized that ULF glucose concentrations and endometrial transcript abundance for glucose transporters on d16 after insemination would be greater in heifers with increased numbers of antral follicles. Heifers classified with either increased or diminished antral follicle counts were artificially inseminated following the CO-Synch protocol (d0). On d16 after insemination, reproductive tracts of heifers were collected at an abattoir to retrieve conceptuses to determine pregnancy. Uterine luminal fluid was collected, endometrium was biopsied, total RNA was extracted and glucose transporter transcript abundances were determined. Data were analyzed using the MIXED procedure of SAS with antral follicle group, pregnancy status, and the interaction as fixed effects. Glucose concentrations in ULF were greater in heifers with increased antral follicle numbers. Glucose ULF concentrations increased in pregnant heifers. Facilitated glucose transporter member 1 (SLC2A1) transcript abundance was increased in the endometrium of pregnant heifers but was not different due to antral follicle number or the interaction. Differences in uterine concentrations of glucose associated with antral follicle number could be due to another mechanism, since glucose transporters were not different between antral follicle numbers. Therefore, heifers with increased number of antral follicles have increased energy availability in the uterus to support trophoblast proliferation and function

    Vascular Endothelial Growth Factor A 165 rescues steroids, inflammation and follicle arrest in High Androstenedione cows

    Get PDF
    A population of cows with excess androstenedione (A4; High A4) in follicular fluid, with follicular arrest, granulosa cell dysfunction, and a 17% reduction in calving rate was previously identified. We hypothesized that excess A4 in the ovarian microenvironment caused the follicular arrest in High A4 cows and that vascular endothelial growth factor A would rescue the High A4 phenotype. In trial 1, prior to culture, High A4 ovarian cortex (n=9) had greater numbers of early stage follicles (primordial) and fewer later-stage follicles compared to controls (n=11). Culture for 7 days did not relieve this follicular arrest; instead, High A4 ovarian cortex had increased indicators of inflammation, anti-Mullerian hormone, and A4 secretion compared to controls. In trial 2, we tested if vascular endothelial growth factor A (VEGFA) angiogenic (165) and antiangiogenic (VEGFA165b) isoforms could rescue the High A4 phenotype. High A4 (n=5) and control (n=5) ovarian cortex was cultured with (1) PBS, (2) VEGFA165 (50 ng/mL), (3) VEGFA165b (50 ng/mL), or (4) VEGFA165+VEGFA165b (50 ng/mL each) for 7 days. Follicular progression increased with VEGFA165 in High A4 cows with greater early primary, primary, and secondary follicles than controls. Similar to trial 1, High A4 ovarian cortex secreted greater concentrations of A4 and other steroids and had greater indicators of inflammation compared to controls. However, VEGFA165 rescued steroidogenesis, oxidative stress, and fibrosis. Both VEGFA isoforms reduced specific pro-inflammatory cytokines in High A4 cows to control levels. Thus, VEGFA165 may be a potential therapeutic to restore the ovarian steroidogenic microenvironment to promote folliculogenesis

    A high-androgen microenvironment inhibits granulosa cell proliferation and alters cell identity

    Get PDF
    A naturally occurring bovine model with excess follicular fluid androstenedione (High A4), reduced fertility, and polycystic ovary syndrome (PCOS)-like characteristics has been identified. We hypothesized High A4 granulosa cells (GCs) would exhibit altered cell proliferation and/or steroidogenesis. Microarrays of Control and High A4 GCs combined with Ingenuity Pathway Analysis indicated that High A4 GCs had cell cycle inhibition and increased expression of microRNAs that inhibit cell cycle genes. Granulosa cell culture confirmed that A4 treatment decreased GC proliferation, increased anti-MĂĽllerian hormone, and increased mRNA for CTNNBIP1. Increased CTNNBIP1 prevents CTNNB1 from interacting with members of the WNT signaling pathway thereby inhibiting the cell cycle. Expression of CYP17A1 was upregulated in High A4 GCs presumably due to reduced FOS mRNA expression compared to Control granulosa cells. Furthermore, comparisons of High A4 GC with thecal and luteal cell transcriptomes indicated an altered cellular identity and function contributing to a PCOS-like phenotype

    A high-androgen microenvironment inhibits granulosa cell proliferation and alters cell identity

    Get PDF
    A naturally occurring bovine model with excess follicular fluid androstenedione (High A4), reduced fertility, and polycystic ovary syndrome (PCOS)-like characteristics has been identified. We hypothesized High A4 granulosa cells (GCs) would exhibit altered cell proliferation and/or steroidogenesis. Microarrays of Control and High A4 GCs combined with Ingenuity Pathway Analysis indicated that High A4 GCs had cell cycle inhibition and increased expression of microRNAs that inhibit cell cycle genes. Granulosa cell culture confirmed that A4 treatment decreased GC proliferation, increased anti-MĂĽllerian hormone, and increased mRNA for CTNNBIP1. Increased CTNNBIP1 prevents CTNNB1 from interacting with members of the WNT signaling pathway thereby inhibiting the cell cycle. Expression of CYP17A1 was upregulated in High A4 GCs presumably due to reduced FOS mRNA expression compared to Control granulosa cells. Furthermore, comparisons of High A4 GC with thecal and luteal cell transcriptomes indicated an altered cellular identity and function contributing to a PCOS-like phenotype

    Prostaglandin F2α regulates mitochondrial dynamics and mitophagy in the bovine corpus luteum

    Get PDF
    Prostaglandins are arachidonic acid-derived lipid mediators involved in numerous physiological and pathological processes. PGF2α analogues are therapeutically used for regulating mammalian reproductive cycles and blood pressure, inducing term labor, and treating ocular disorders. PGF2α exerts effects via activation of calcium and PKC signaling, however, little is known about the cellular events imposed by PGF2α signaling. Here, we explored the early effects of PGF2α on mitochondrial dynamics and mitophagy in the bovine corpus luteum employing relevant and well characterized in vivo and in vitro approaches. We identified PKC/ERK and AMPK as critical protein kinases essential for activation of mitochondrial fission proteins, DRP1 and MFF. Furthermore, we report that PGF2α elicits increased intracellular reactive oxygen species and promotes receptormediated activation of PINK–Parkin mitophagy. These findings place the mitochondrium as a novel target in response to luteolytic mediator, PGF2α. Understanding intracellular processes occurring during early luteolysis may serve as a target for improving fertility

    Transcriptomic data of bovine ovarian granulosa cells of control and High A4 cows

    Get PDF
    Microarray analysis using Affymetrix Bovine GeneChip 1.0 ST Array to determine RNA expression analysis was performed on somatic granulosa cells from two different groups of cows classified based on androstenedione concentration within the follicular fluid (Control vs High A4) of estrogen-active dominant follicles. The normalized linear microarray data was deposited to the NCBI GEO repository (GSE97017 - RNA Expression Data from Bovine Ovarian Granulosa Cells from High or Low Androgen-Content Follicles). Subsequent ANOVA determined genes that were enriched (≥ 1.5 fold more) or decreased (≤ 1.5 fold less) in the High A4 granulosa cells compared to Control granulosa cells and analyzed filtered datasets of these differentially expressed genes are presented as tables. MicroRNAs that are differentially expressed in Control and High A4 granulosa cells are also reported in tables. The standard deviation of the analyzed array data in relation to the log of the expression values are shown as a figure. Ingenuity Pathway Analysis determined upstream regulators of differently expressed genes as presented in a table. These data have been further analyzed and interpreted in the companion article “A High-Androgen Microenvironment Inhibits Granulosa Cell Proliferation and Alters Cell Identity” (McFee et. al., 2021 [1]
    corecore