18 research outputs found

    Investigating the Concordance in molecular subtypes of primary colorectal tumors and their matched synchronous liver metastasis

    Get PDF
    To date, no systematic analyses are available assessing concordance of molecular classifications between primary tumors (PT) and matched liver metastases (LM) of metastatic colorectal cancer (mCRC). We investigated concordance between PT and LM for four clinically relevant CRC gene signatures. Twenty-seven fresh and 55 formalin-fixed paraffin-embedded pairs of PT and synchronous LM of untreated mCRC patients were retrospectively collected and classified according to the MSI-like, BRAF-like, TGFB activated-like and the Consensus Molecular Subtypes (CMS) classification. We investigated classification concordance between PT and LM and association of TGFBa-like and CMS classification with overall survival. Fifty-one successfully profiled matched pairs were used for analyses. PT and matched LM were highly concordant in terms of BRAF-like and MSI-like signatures, (90.2% and 98% concordance, respectively). In contrast, 40% to 70% of PT that were classified as mesenchymal-like, based on the CMS and the TGFBa-like signature, respectively, lost this phenotype in their matched LM (60.8% and 76.5% concordance, respectively). This molecular switch was independent of the microenvironment composition. In addition, the significant change in subtypes was observed also by using methods developed to detect cancer cell-intrinsic subtypes. More importantly, the molecular switch did not influence the survival. PT classified as mesenchymal had worse survival as compared to nonmesenchymal PT (CMS4 vs CMS2, hazard ratio [HR] = 5.2, 95% CI = 1.5-18.5, P = .0048; TGFBa-like vs TGFBi-like, HR = 2.5, 95% CI = 1.1-5.6, P = .028). The same was not true for LM. Our study highlights that the origin of the tissue may have major consequences for precision medicine in mCRC

    Prognostic Value of MammaPrint® in Invasive Lobular Breast Cancer.

    Get PDF
    BACKGROUND: MammaPrint® is a microarray-based gene expression test cleared by the US Food and Drug Administration to assess recurrence risk in early-stage breast cancer, aimed to guide physicians in making neoadjuvant and adjuvant treatment decisions. The increase in the incidence of invasive lobular carcinomas (ILCs) over the past decades and the modest representation of ILC in the MammaPrint development data set calls for a stratified survival analysis dedicated to this specific subgroup. STUDY AIM: The current study aimed to validate the prognostic value of the MammaPrint test for breast cancer patients with early-stage ILCs. MATERIALS AND METHODS: Univariate and multivariate survival associations for overall survival (OS), distant metastasis-free interval (DMFI), and distant metastasis-free survival (DMFS) were studied in a study population of 217 early-stage ILC breast cancer patients from five different clinical studies. RESULTS AND DISCUSSION: A significant association between MammaPrint High Risk and poor clinical outcome was shown for OS, DMFI, and DMFS. A subanalysis was performed on the lymph node-negative study population. In the lymph node-negative study population, we report an up to 11 times higher change in the diagnosis of an event in the MammaPrint High Risk group. For DMFI, the reported hazard ratio is 11.1 (95% confidence interval = 2.3-53.0). CONCLUSION: Study results validate MammaPrint as an independent factor for breast cancer patients with early-stage invasive lobular breast cancer. Hazard ratios up to 11 in multivariate analyses emphasize the independent value of MammaPrint, specifically in lymph node-negative ILC breast cancers.This study was supported in part by the European Union Seventh Framework Programme (FP7/2007–2013) under the RATHER project (Rational Therapy for Breast Cancer; grant agreement no. 258967

    Involvement of cell cycle control in bleomycin-induced mutagen sensitivity

    No full text
    Bleamycin-induced chromosomal instability, generally referred to as mutagen sensitivity, is associated with an increased risk for the development of environmentally related cancer including head and neck squamous cell carcinoma and lung cancer. On average, the cultured lymphocytes of patients with these types of cancer show an increased number of chromatid breaks per cell after bleomycin exposure in the late S or G2 phase of the cell cycle as compared to lymphocytes from control persons. The aim of the present study was to investigate whether cell cycle regulation is involved in mutagen sensitivity. We determined cell cycle arrest after bleomycin-induced DNA damage in 21 lymphoblastoid cell lines that varied in mutagen sensitivity score. An ataxia telangiectasia (AT) cell line was included for comparison. Using a cut-off point of 0.70 breaks per cell, eight cell lines were classified as insensitive and 13 cell lines showed the hypersensitive phenotype. Compared to insensitive cell lines, bleamycin-treated hypersensitive cells remained at a relatively high level of DNA synthesis, as measured by thymidine incorporation, and showed a decreased accumulation of cells in G2 and M phase, as measured by flow cytometry. AT cells showed an extremely high mutagen sensitivity score, a high level of DNA synthesis, and a strong G2 block. In conclusion, mutagen sensitivity is associated with "damage-resistant growth," which is indicative of impaired cell cycle arrest. By which specific pathway(s) this checkpoint defect is explained has yet to be elucidated; however, it is probably distinct from the checkpoint defect in AT cells

    Microarray analysis of bleomycin-exposed lymphoblastoid cells for identifying cancer susceptibility genes

    No full text
    The uncovering of genes involved in susceptibility to the sporadic cancer types is a great challenge. It is well established that the way in which an individual deals with DNA damage is related to the chance to develop cancer. Mutagen sensitivity is a phenotype that reflects an individual's susceptibility to the major sporadic cancer types, including colon, lung, and head and neck cancer. A standard test for mutagen sensitivity is measuring the number of chromatid breaks in lymphocytes after exposure to bleomycin. The aim of the present study was to search for the pathways involved in mutagen sensitivity. Lymphoblastoid cell lines of seven individuals with low mutagen sensitivity were compared with seven individuals with a high score. RNA was isolated from cells exposed to bleomycin (4 hours) and from unexposed cells. Microarray analysis (19K) was used to compare gene expression of insensitive and sensitive cells. The profile of most altered genes after bleomycin exposure, analyzed in all 14 cell lines, included relatively many genes involved in biological processes, such as cell growth and/or maintenance, proliferation, and regulation of cell cycle, as well as some genes involved in DNA repair. When comparing the insensitive and sensitive individuals, other differentially expressed genes were found that are involved in signal transduction and cell growth and/or maintenance (e.g., BUB1 and DUSP4). This difference in expression profiles between mutagen-sensitive and mutagen-insensitive individuals justifies further studies aimed at elucidating the genes responsible for the development of sporadic cancers

    A Computational Workflow Translates a 58-Gene Signature to a Formalin-Fixed, Paraffin-Embedded Sample-Based Companion Diagnostic for Personalized Treatment of the BRAF-Mutation-Like Subtype of Colorectal Cancers

    No full text
    Colorectal cancer patients with the BRAF(p.V600E) mutation have poor prognosis in metastatic setting. Personalized treatment options and companion diagnostics are needed to better treat these patients. Previously, we developed a 58-gene signature to characterize the distinct gene expression pattern of BRAF-mutation-like subtype (accuracy 91.1%). Further experiments repurposed drug Vinorelbine as specifically lethal to this BRAF-mutation-like subtype. The aim of this study is to translate this 58-gene signature from a research setting to a robust companion diagnostic that can use formalin-fixed, paraffin-embedded (FFPE) samples to select patients with the BRAF-mutation-like subtype. BRAF mutation and gene expression data of 302 FFPE samples were measured (mutants = 57, wild-type = 245). The performance of the 58-gene signature in FFPE samples showed a high sensitivity of 89.5%. In the identified BRAF-mutation-like subtype group, 50% of tumours were known BRAF mutants, and 50% were BRAF wild-type. The stability of the 58-gene signature in FFPE samples was evaluated by two control samples over 40 independent experiments. The standard deviations (SD) were within the predefined criteria (control 1: SD = 0.091, SD/Range = 3.0%; control 2: SD = 0.169, SD/Range = 5.5%). The fresh frozen version and translated FFPE version of this 58-gene signature were compared using 170 paired fresh frozen and FFPE samples and the result showed high consistency (agreement = 99.3%). In conclusion, we translated this 58-gene signature to a robust companion diagnostic that can use FFPE samples
    corecore