44 research outputs found
Pro-Oxidant Therapeutic Activities of Cerium Oxide Nanoparticles in Colorectal Carcinoma Cells
Given that basal levels of reactive oxygen species (ROS) are higher in cancer cells, there is a growing school of thought that endorses pro-oxidants as potential chemotherapeutic agents. Intriguingly, cerium oxide (CeO2) nanoparticles can manifest either anti- or pro-oxidant activity as a function of differential pH of various subcellular localizations. In an acidic pH environment, for example, in extracellular milieu of cancer cells, CeO2 would function as a pro-oxidant. Based on this concept, the present study is designed to investigate the pro-oxidant activities of CeO2 in human colorectal carcinoma cell line (HCT 116). For comparison, we have also studied the effect of ceria nanoparticles on human embryonic kidney (HEK 293) cells. Dose-dependent viability of cancerous as well as normal cells has been assessed by treating them independently with CeO2 nanoparticles of different concentrations (5-100 mu g/mL) in the culture media. The half maximal inhibitory concentration (IC50) of nanoceria for HCT 116 is found to be 50.48 mu g/mL while that for the HEK 293 cell line is 92.03 mu g/mL. To understand the intricate molecular mechanisms of CeO2-induced cellular apoptosis, a series of experiments have been conducted. The apoptosis-inducing ability of nanoceria has been investigated by Annexin V-FITC staining, caspase 3/9 analysis, cytochrome c release, intracellular ROS analysis, and mitochondrial membrane potential analysis using flow cytometry. Experimental data suggest that CeO2 treatment causes DNA fragmentation through enhanced generation of ROS, which ultimately leads to cellular apoptosis through the p53-dependent mitochondrial signaling pathway
Physical, Spectroscopic and Thermal Characterization of Biofield treated Myristic acid
Myristic acid has been extensively used for fabrication of phase change materials for thermal energy storage applications. The objective of present research was to investigate the influence of biofield treatment on physical and thermal properties of myristic acid. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated myristic acid were characterized by X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, and Laser particle size analyzer. XRD results revealed alteration in intensity of peaks as well as significant increase in crystallite size (27.07%) of treated myristic acid with respect to control. DSC study showed increase in melting temperature of treated myristic acid as compared to control. Nevertheless, significant change (10.16%) in latent heat of fusion (∆H) was observed in treated myristic acid with respect to control. TGA analysis of treated myristic acid showed less weight loss (31.33%) as compared to control sample (60.49%). This may be due to increase in thermal stability of treated myristic acid in comparison with control. FT-IR results showed increase in frequency of –CH2 and C=O stretching vibrations, probably associated with enhanced bond strength and force constant of the respective bonds. The particle size analyzer showed significant decrease in average particle size (d50 and d99) of treated myristic acid with respect to control. Overall, the results showed significant alteration in physical, spectroscopic and thermal properties of myristic acid. The enhanced crystallite size, and thermal stability of treated myristic acid showed that treated myristic acid could be used as phase change material for thermal energy storage applications. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down
Characterization of Physical, Spectral and Thermal Properties of Biofield Treated 1,2,4-Triazole
Triazoles are an important class of compounds used as core molecule for the synthesis of many pharmaceutical drugs. The objective of the present research was to investigate the influence of biofield treatment on physical, spectral and thermal properties of 1,2,4-triazole. The study was performed in two groups, control and treatment. The control group remained as untreated, and biofield treatment was given to treatment group. The control and treated 1,2,4-triazole were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermo Gravimetric analysis (TGA), Surface area analyzer, and Fourier transform infrared (FT-IR) spectroscopy. XRD analysis revealed a decrease in unit cell volume of treated 1,2,4-triazole (662.08 10-24 cm3) as compared to control sample (666.34 10-24 cm3). Similarly, a decrease in molecular weight of treated 1,2,4-triazole (69.78 g/mol) with respect to control (70.23 g/mol) was observed. Additionally, a substantial decrease in crystallite size (G) was observed in treated 1,2,4-triazole by 16.34% with respect to control. DSC analysis showed a slight increase in melting temperature of treated 1,2,4-triazole (124.22°C) as compared to control (123.76°C). Moreover, a significant increase in latent heat of fusion was noticed in treated 1,2,4-triazole by 21.16% as compared to control sample. TGA analysis showed a significant increase in maximum thermal decomposition temperature (Tmax) of treated 1,2,4-triazole (213.40°C) as compared to control (199.68°C). Surface area analysis using BET showed a substantial increase in surface area of the treated compound by 13.52% with respect to control. However, FT-IR analysis showed no structural changes in treated 1,2,4-triazole with respect to control. Overall, the result showed significant alteration of physical and thermal properties of the treated 1,2,4-triazole with respect to control.
Source:
https://www.trivedieffect.com/science/characterization-of-physical-spectral-and-thermal-properties-of-biofield-treated-124-triazole
https://www.omicsonline.org/open-access/characterization-of-physical-spectral-and-thermal-properties-of-biofieldtreated-124triazole-2329-9053-1000128.php?aid=5908
Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
International audienceCellulose and its derivatives are used as potential matrices for biomaterials and tissue engineering applications. The objective of present research was to investigate the influence of biofield treatment on physical, chemical and thermal properties of ethyl cellulose (EC) and methyl cellulose (MC). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The biofield treated polymers are characterized by Fourier transform infrared spectroscopy (FT-IR), CHNSO analysis, X-ray diffraction study (XRD), Differential Scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FT-IR analysis of treated EC showed downward shifting in C-O-C stretching peak from 1091→1066 cm-1 with respect to control. However, the treated MC showed upward shifting of –OH stretching (3413→3475) and downward shifting in C-O stretching (1647→1635 cm-1) vibrations with respect to control MC. CHNSO analysis showed substantial increase in percent hydrogen and oxygen in treated polymers with respect to control. XRD diffractogram of EC and MC affirmed the typical semi-crystalline nature. The crystallite size was substantially increased by 20.54% in treated EC with respect to control. However, the treated MC showed decrease in crystallite by 61.59% with respect to control. DSC analysis of treated EC showed minimal changes in crystallization temperature with respect to control sample. However, the treated and control MC did not show any crystallization temperature in the samples. TGA analysis of treated EC showed increase in thermal stability with respect to control. However, the TGA thermogram of treated MC showed reduction in thermal stability as compared to control. Overall, the result showed substantial alteration in physical, chemical and thermal properties of treated EC and MC