54 research outputs found

    Unique motifs identify PIG-A proteins from glycosyltransferases of the GT4 family

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first step of GPI anchor biosynthesis is catalyzed by PIG-A, an enzyme that transfers <it>N</it>-acetylglucosamine from UDP-<it>N</it>-acetylglucosamine to phosphatidylinositol. This protein is present in all eukaryotic organisms ranging from protozoa to higher mammals, as part of a larger complex of five to six 'accessory' proteins whose individual roles in the glycosyltransferase reaction are as yet unclear. The PIG-A gene has been shown to be an essential gene in various eukaryotes. In humans, mutations in the protein have been associated with paroxysomal noctural hemoglobuinuria. The corresponding PIG-A gene has also been recently identified in the genome of many archaeabacteria although genes of the accessory proteins have not been discovered in them. The present study explores the evolution of PIG-A and the phylogenetic relationship between this protein and other glycosyltransferases.</p> <p>Results</p> <p>In this paper we show that out of the twelve conserved motifs identified by us eleven are exclusively present in PIG-A and, therefore, can be used as markers to identify PIG-A from newly sequenced genomes. Three of these motifs are absent in the primitive eukaryote, <it>G. lamblia</it>. Sequence analyses show that seven of these conserved motifs are present in prokaryote and archaeal counterparts in rudimentary forms and can be used to differentiate PIG-A proteins from glycosyltransferases. Using partial least square regression analysis and data involving presence or absence of motifs in a range of PIG-A and glycosyltransferases we show that (i) PIG-A may have evolved from prokaryotic glycosyltransferases and lipopolysaccharide synthases, members of the GT4 family of glycosyltransferases and (ii) it is possible to uniquely classify PIG-A proteins versus glycosyltransferases.</p> <p>Conclusion</p> <p>Besides identifying unique motifs and showing that PIG-A protein from <it>G. lamblia </it>and some putative PIG-A proteins from archaebacteria are evolutionarily closer to glycosyltransferases, these studies provide a new method for identification and classification of PIG-A proteins.</p

    A simple characterization of special matchings in lower Bruhat intervals

    Full text link
    We give a simple characterization of special matchings in lower Bruhat intervals (that is, intervals starting from the identity element) of a Coxeter group. As a byproduct, we obtain some results on the action of special matchings.Comment: accepted for publication on Discrete Mathematic

    Interaction of porphyrins with concanavalin a and pea lectin

    Get PDF
    Currently porphyrins are used as photosensitizers in photodynamic therapy for the treatment of cancer. However, this approach suffers due to the inability of many porphyrin-based drugs to accumulate preferentially in tumours. In view of this, we considered if the carbohydrate-binding proteins, lectins, which preferentially recognize malignant cells, could be used for the targeting of porphyrins to tumour cells. In the present study, we have investigated the interaction of a free base porphyrin, meso-tetrasulphonatophenylporphyrin and the corresponding metal derivative, meso-zinc-tetrasulphonatophenylporphyrin with two legume lectins, concanavalin A and pea (Pisum sativum) lectin. Each lectin subunit was found to bind one porphyrin molecule and the association constant, Ka, estimated from absorption and fluorescence titrations at room temperature (28 +/- 1 degree centigrade) was in the range of 1.2 X 10 to the power of 4 M to the power of -1 to 6.3 X 10 to the power of 4 M to the power of -1. Both free lectin and lectin saturated with the specific saccharide were found to bind the porphyrin with comparable binding strength, indicating that porphyrin binding takes place at a site different from the sugar-binding site. These results indicate that lectins may potentially serve as drug-delivery agents for porphyrin sensitizers in photodynamic therapy

    Ras hyperactivation versus overexpression : Lessons from Ras dynamics in Candida albicans

    Get PDF
    We thank Prof. Neta Dean for the CIp10ADH1-Cherry plasmid and Prof. Aaron Mitchell for the BWP17 strain. We gratefully acknowledge Prof. Sudipta Maiti, TIFR, Mumbai, India for providing the data acquisition software. We also appreciate the feedback and discussions with Dr. Rohini Muthuswami, SLS, JNU as well as from the Protein Society group, New Delhi while this study was taking shape. We thank Prof. Alok Bhattacharya for Cytochalasin D. The GC-MS and fluorescence lifetime measurements were carried out at the Advanced Instrumentation Research Facility (AIRF), JNU. Confocal images were recorded either at the central instrumentation facility (CIF), SLS, JNU or at AIRF, JNU. This work was supported by project grants from Department of Biotechnology (DBT, Project grant no. BT/PR20410/BRB/10/1542/2016) and Department of Science and Technology (DST, Project grant no. SB/SO/BB-011/2014), India to S.S.K; and project grants from Department of Information Technology, (DIT, Project grant no. 12(4)/2007-PDD), India to S.S. for FCS setup. In addition, both S.S. and S.S.K. thank DBT-BUILDER for funding support (Project grant no. BT/PR5006/INF/153/2012). S.S.K. also acknowledges funding support from UGC Resource Networking grant to the School of Life Sciences. We thank DST-PURSE and JNU for assistance with funding for publication. G.S.V. and S.C.S. received a fellowship from UGC; V.A.P., B.Y., P.J., N.P., M.F.K. acknowledge CSIR for fellowships. S.L.S. received a fellowship from ICMR. D.T.H. and M.F.K. thank DBT-BUILDER for funding.Peer reviewedPublisher PD

    Alanine scanning of transmembrane helix 11 of Cdr1p ABC antifungal efflux pump of Candida albicans: identification of amino acid residues critical for drug efflux

    Get PDF
    Objectives: To investigate the role of transmembrane segment 11 (TMS11) of Candida albicans drug resistance protein (Cdr1p) in drug extrusion. Methods: We replaced each of the 21 putative residues of TMS11 with alanine by site-directed mutagenesis. The Saccharomyces cerevisiae AD1-8u&#8722; strain was used to overexpress the green fluorescent protein tagged wild-type and mutant variants of TMS11 of Cdr1p. The cells expressing mutant variants were functionally characterized. Results: Out of 21 residues of TMS11, substitution of seven residues, i.e. A1346G, A1347G, T1351A, T1355A, L1358A, F1360A and G1362A, affected differentially the substrate specificity of Cdr1p, while 14 mutants had no significant effect on Cdr1p function. TMS11 projection in an &#945;-helical configuration revealed with few exceptions (A1346 and F1360), a distinct segregation of mutation-sensitive residues (A1347, T1351, T1355, L1358 and G1362) towards the more hydrophilic face. Interestingly, mutation-insensitive residues seem to cluster towards the hydrophobic side of the helix. Competition of rhodamine 6G efflux, in the presence of excess of various substrates in the cells expressing native Cdr1p, revealed for the first time the overlapping binding site between azoles (such as ketoconazole, miconazole and itraconazole) and rhodamine 6G. The ability of these azoles to compete with rhodamine 6G was completely lost in mutants F1360A and G1362A, while it was selectively lost in other variants of Cdr1p. We further confirmed that fungicidal synergism of calcineurin inhibitor FK520 with azoles is mediated by Cdr1p; wherein in addition to conserved T1351, substitution of T1355, L1358 and G1362 of TMS11 also resulted in abrogation of synergism. Conclusions: Our study for the first time provides an insight into the possible role of TMS11 of Cdr1p in drug efflux

    Elucidating the mechanism of DNA-dependent ATP hydrolysis mediated by DNA-dependent ATPase A, a member of the SWI2/SNF2 protein family

    Get PDF
    The active DNA-dependent ATPase A domain (ADAAD), a member of the SWI2/SNF2 family, has been shown to bind DNA in a structure-specific manner, recognizing DNA molecules possessing double-stranded to single-stranded transition regions leading to ATP hydrolysis. Extending these studies we have delineated the structural requirements of the DNA effector for ADAAD and have shown that the single-stranded and double-stranded regions both contribute to binding affinity while the double-stranded region additionally plays a role in determining the rate of ATP hydrolysis. We have also investigated the mechanism of interaction of DNA and ATP with ADAAD and shown that each can interact independently with ADAAD in the absence of the other. Furthermore, the protein can bind to dsDNA as well as ssDNA molecules. However, the conformation change induced by the ssDNA is different from the conformational change induced by stem-loop DNA (slDNA), thereby providing an explanation for the observed ATP hydrolysis only in the presence of the double-stranded:single-stranded transition (i.e. slDNA)

    The GPI Anchor Signal Sequence Dictates the Folding and Functionality of the Als5 Adhesin from Candida albicans

    Get PDF
    Background: Proteins destined to be Glycosylphosphatidylinositol (GPI) anchored are translocated into the ER lumen completely before the C-terminal GPI anchor attachment signal sequence (SS) is removed by the GPI-transamidase and replaced by a pre-formed GPI anchor precursor. Does the SS have a role in dictating the conformation and function of the protein as well? Methodology/Principal Findings: We generated two variants of the Als5 protein without and with the SS in order to address the above question. Using a combination of biochemical and biophysical techniques, we show that in the case of Als5, an adhesin of C. albicans, the C-terminal deletion of 20 amino acids (SS) results in a significant alteration in conformation and function of the mature protein. Conclusions/Significance: We propose that the locking of the conformation of the precursor protein in an alternate conformation from that of the mature protein is one probable strategy employed by the cell to control the behaviour an

    Solvation dynamics in a Brownian dipolar lattice. Comparison between computer simulation and various molecular theories of solvation dynamics

    No full text
    Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non-Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two-particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency-dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried-Mukamel theory which use the simulated frequency-dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried-Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency-dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions

    Fluorescence quenching, time-resolved fluorescence and chemical modification studies on the tryptophan residues of snake gourd (Trichosanthes anguina) seed lectin

    No full text
    Fluorescence quenching and time-resolved fluorescence studies have been performed on the galactose-specific lectin purified from snake gourd (Trichosanthes anguina) seeds, in order to investigate the tryptophan accessibility and environment in the native protein and in the presence of bound ligand. Estimation of the tryptophan content by N-bromosuccinimide modification in the presence of 8 M urea yields four residues per dimeric molecule. The emission spectrum of native lectin in the absence as well as in the presence of 50 mM methyl-α-d-galatopyranoside (MeαGal) shows a maximum around 331 nm, which shifts to 361.8 nm upon reduction of the disulfide bonds and denaturation with 8 M urea, indicating that all four tryptophan residues in the native state of this protein are in a hydrophobic environment. The extent of quenching that is observed is highest with acrylamide, intermediate with succinimide, and low with Cs<sup>+</sup> and I<sup>−</sup>, further supporting the idea that the tryptophan residues are predominantly buried in the hydrophobic core of the protein. The presence of MeαGal (50 mM) affects the quenching only marginally. Time-resolved fluorescence measurements yield bi-exponential decay curves with lifetimes of 1.45 and 4.99 ns in the absence of sugar, and 1.36 and 4.8 ns in its presence. These results suggest that the tryptophan residues are not directly involved in the saccharide binding activity of the T. anguina lectin. Of the four quenchers employed in this study, the cationic quencher, Cs<sup>+</sup>, is found to be a very sensitive probe for the tryptophan environment of this lectin and may be useful in investigating the environment of partially buried tryptophan residues and unfolding processes in other proteins as well

    Thermodynamic analysis of saccharide binding to snake gourd (Trichosanthes anguina) seed lectin

    No full text
    The interaction of different saccharides with the snake gourd (Trichosanthes anguina) seed lectin (SGSL) was investigated by fluorescence spectroscopy. Binding of 4-methylumbelliferyl-β-d-galactopyranoside (MeUmbβGal) to SGSL resulted in a significant increase in the fluorescence emission intensity of the sugar at 376 nm, and this change was used to estimate the association constants for the binding interaction. Interestingly, the increase in emission intensity changed with a change in temperature, increasing from 19.2% at 20 °C to 80.2% at 40 °C. At 20 °C the association constant, Ka, for the MeUmbβGal–SGSL interaction was found by fluorescence titration to be 5.8 × 10<sup>4</sup> m<sup>−1</sup>. From the temperature dependence of the association constants, the changes in enthalpy (ΔH) and entropy (ΔS) associated with binding of MeUmbβGal to SGSL were estimated to be −80.85 kJ·mol<sup>−1</sup> and −184.0 J·mol<sup>−1</sup>·K<sup>−1</sup>, respectively. Binding of unlabeled sugars was investigated by monitoring the decrease in fluorescence intensity when they were added to a mixture of SGSL and MeUmbβGal. The K<sub>a</sub> values for different sugars were determined at several temperatures, and ΔH and ΔS were determined from the van’t Hoff plots. Enthalpy–entropy compensation was noticed in all cases. The results indicate that saccharide binding to SGSL is enthalpy-driven and the negative contribution from entropy is, in general, quite high
    corecore