10 research outputs found

    Deep Neural Networks for Bot Detection

    Full text link
    The problem of detecting bots, automated social media accounts governed by software but disguising as human users, has strong implications. For example, bots have been used to sway political elections by distorting online discourse, to manipulate the stock market, or to push anti-vaccine conspiracy theories that caused health epidemics. Most techniques proposed to date detect bots at the account level, by processing large amount of social media posts, and leveraging information from network structure, temporal dynamics, sentiment analysis, etc. In this paper, we propose a deep neural network based on contextual long short-term memory (LSTM) architecture that exploits both content and metadata to detect bots at the tweet level: contextual features are extracted from user metadata and fed as auxiliary input to LSTM deep nets processing the tweet text. Another contribution that we make is proposing a technique based on synthetic minority oversampling to generate a large labeled dataset, suitable for deep nets training, from a minimal amount of labeled data (roughly 3,000 examples of sophisticated Twitter bots). We demonstrate that, from just one single tweet, our architecture can achieve high classification accuracy (AUC > 96%) in separating bots from humans. We apply the same architecture to account-level bot detection, achieving nearly perfect classification accuracy (AUC > 99%). Our system outperforms previous state of the art while leveraging a small and interpretable set of features yet requiring minimal training data

    DANTE: Deep AlterNations for Training nEural networks

    Full text link
    We present DANTE, a novel method for training neural networks using the alternating minimization principle. DANTE provides an alternate perspective to traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convexity to cast training a neural network as a bi-quasi-convex optimization problem. We show that for neural network configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations effectively in this formulation. DANTE can also be extended to networks with multiple hidden layers. In experiments on standard datasets, neural networks trained using the proposed method were found to be promising and competitive to traditional backpropagation techniques, both in terms of quality of the solution, as well as training speed.Comment: 19 page

    BUFFET: Benchmarking Large Language Models for Few-shot Cross-lingual Transfer

    Full text link
    Despite remarkable advancements in few-shot generalization in natural language processing, most models are developed and evaluated primarily in English. To facilitate research on few-shot cross-lingual transfer, we introduce a new benchmark, called BUFFET, which unifies 15 diverse tasks across 54 languages in a sequence-to-sequence format and provides a fixed set of few-shot examples and instructions. BUFFET is designed to establish a rigorous and equitable evaluation framework for few-shot cross-lingual transfer across a broad range of tasks and languages. Using BUFFET, we perform thorough evaluations of state-of-the-art multilingual large language models with different transfer methods, namely in-context learning and fine-tuning. Our findings reveal significant room for improvement in few-shot in-context cross-lingual transfer. In particular, ChatGPT with in-context learning often performs worse than much smaller mT5-base models fine-tuned on English task data and few-shot in-language examples. Our analysis suggests various avenues for future research in few-shot cross-lingual transfer, such as improved pretraining, understanding, and future evaluations.Comment: The data and code is available at https://buffetfs.github.io

    MADLAD-400: A Multilingual And Document-Level Large Audited Dataset

    Full text link
    We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models available to the research community.Comment: Preprin

    Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets

    Full text link
    With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.Comment: Accepted at TACL; pre-MIT Press publication versio

    PaLM 2 Technical Report

    Full text link
    We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report
    corecore