67 research outputs found

    Automatic 3D Postoperative Evaluation of Complex Orthopaedic Interventions

    Get PDF
    In clinical practice, image-based postoperative evaluation is still performed without state-of-the-art computer methods, as these are not sufficiently automated. In this study we propose a fully automatic 3D postoperative outcome quantification method for the relevant steps of orthopaedic interventions on the example of Periacetabular Osteotomy of Ganz (PAO). A typical orthopaedic intervention involves cutting bone, anatomy manipulation and repositioning as well as implant placement. Our method includes a segmentation based deep learning approach for detection and quantification of the cuts. Furthermore, anatomy repositioning was quantified through a multi-step registration method, which entailed a coarse alignment of the pre- and postoperative CT images followed by a fine fragment alignment of the repositioned anatomy. Implant (i.e., screw) position was identified by 3D Hough transform for line detection combined with fast voxel traversal based on ray tracing. The feasibility of our approach was investigated on 27 interventions and compared against manually performed 3D outcome evaluations. The results show that our method can accurately assess the quality and accuracy of the surgery. Our evaluation of the fragment repositioning showed a cumulative error for the coarse and fine alignment of 2.1 mm. Our evaluation of screw placement accuracy resulted in a distance error of 1.32 mm for screw head location and an angular deviation of 1.1° for screw axis. As a next step we will explore generalisation capabilities by applying the method to different interventions

    The biomechanical fundamentals of crosslink-augmentation in posterior spinal instrumentation

    Full text link
    Posterior screw-rod constructs can be used to stabilize spinal segments; however, the stiffness is not absolute, and some motion can persist. While the effect of crosslink-augmentation has been evaluated in multiple studies, the fundamental explanation of their effectiveness has not been investigated. The aim of this study was to quantify the parameters "screw rotation" and "parallelogram deformation" in posterior instrumentations with and without crosslinks to analyze and explain their fundamental effect. Biomechanical testing of 15 posteriorly instrumented human spinal segments (Th10/11-L4/L5) was conducted in axial rotation, lateral bending, and flexion-extension with ± 7.5 Nm. Screw rotation and parallelogram deformation were compared for both configurations. Parallelogram deformation occurred predominantly during axial rotation (2.6°) and was reduced by 60% (-1.45°, p = 0.02) by the addition of a crosslink. Simultaneously, screw rotation (0.56°) was reduced by 48% (-0.27°, p = 0.02) in this loading condition. During lateral bending, 0.38° of parallelogram deformation and 1.44° of screw rotation was measured and no significant reduction was achieved by crosslink-augmentation (8%, -0.03°, -p = 0.3 and -13%, -0.19°, p = 0.7 respectively). During flexion-extension, parallelogram deformation was 0.4° and screw rotation was 0.39° and crosslink-augmentation had no significant effect on these values (-0.12°, -30%, p = 0.5 and -0°, -0%, p = 0.8 respectively). In axial rotation, crosslink-augmentation can reduce parallelogram deformation and with that, screw rotation. In lateral bending and flexion-extension parallelogram deformation is minimal and crosslink-augmentation has no significant effect. Since the relatively large screw rotation in lateral bending is not caused by parallelogram deformation, crosslink-augmentation is no adequate countermeasure. The fundamental understanding of the biomechanical effect of crosslink-augmentation helps better understand its potential and limitations in increasing construct stiffness

    Thigh muscle activation patterns and dynamic knee valgus at peak ground reaction force during drop jump landings: Reliability, youth competitive alpine skiing-specific reference values and relation to knee overuse complaints

    Get PDF
    Objectives (1) To evaluate the reliability of quantifying thigh muscle activation patterns and dynamic knee valgus during drop jump landings, (2) to provide reference values for female and male youth alpine skiers, and (3) to study their associations with age, anthropometrics, biological maturation and knee overuse complaints. Design Cross-sectional biomechanical experiment including questionnaires. Methods One hundred fourteen skiers of the under 16 category (main experiment) and twelve healthy participants (reliability experiment) volunteered. Quadriceps-to-hamstring-activation ratio and medial knee displacementat peak ground reaction force during drop jump landings were measured using marker-based motion analysis, force plates and electromyography. Additionally, age, anthropometrics, biological maturation and knee overuse complaints were assessed. Results There were good test–retest reliabilities and moderate standardized typical errors for both quadriceps-to-hamstring-activation ratio (intraclass correlation coefficient(3,1) = 0.84 [95% confidence interval: 0.69, 0.94]; standardized typical errors = 0.43 [0.35, 0.56]) and medial knee displacement (intraclass correlation coefficient(3,1) = 0.87 [0.74, 0.95]; standardized typical errors = 0.39 [0.32, 0.50]). Male skiers had a significantly higher quadriceps-to-hamstring-activation ratio (3.9 ± 2.0 vs. 2.9 ± 1.4, p = 0.011), whilst medial knee displacement was comparable to females (12 mm ± 11 mm vs. 13 mm ± 9 mm; p = 0.419). In male skiers, medial knee displacement correlated with anthropometrics and maturity offset; in female skiers, quadriceps-to-hamstring-activation ratio and medial knee displacement were associated with knee overuse complaints (p < 0.05). Conclusions Female and male youth skiers use different thigh muscle activation strategies, but show comparable dynamic knee valgus motions during drop jump landings. In females, a combination of increased relative quadriceps activity and medial knee displacement may favour knee overuse complaints.ISSN:1440-244

    Engineering Tendon Assembloids to Probe Cellular Crosstalk in Disease and Repair

    No full text
    Tendons enable locomotion by transferring muscle forces to bones. They rely on a tough tendon core comprising collagen fibers and stromal cell populations. This load-bearing core is encompassed, nourished, and repaired by a synovial-like tissue layer comprising the extrinsic tendon compartment. Despite this sophisticated design, tendon injuries are common, and clinical treatment still relies on physiotherapy and surgery. The limitations of available experimental model systems have slowed the development of novel disease-modifying treatments and relapse-preventing clinical regimes. In vivo human studies are limited to comparing healthy tendons to end-stage diseased or ruptured tissues sampled during repair surgery and do not allow the longitudinal study of the underlying tendon disease. In vivo animal models also present important limits regarding opaque physiological complexity, the ethical burden on the animals, and large economic costs associated with their use. Further, in vivo animal models are poorly suited to systematic probing of drugs and multicellular, multi-tissue interaction pathways. Simpler in vitro model systems have also fallen short. One major reason is a failure to adequately replicate the three-dimensional mechanical loading necessary to meaningfully study tendon cells and their function. The new 3D model system presented here alleviates some of these issues by exploiting murine tail tendon core explants. Importantly, these explants are easily accessible in large numbers from a single mouse, retain 3D in situ loading patterns at the cellular level, and feature an in vivo-like extracellular matrix. In this protocol, step-by-step instructions are given on how to augment tendon core explants with collagen hydrogels laden with muscle-derived endothelial cells, tendon-derived fibroblasts, and bone marrow-derived macrophages to substitute disease-and injury-activated cell populations within the extrinsic tendon compartment. It is demonstrated how the resulting tendon assembloids can be challenged mechanically or through defined microenvironmental stimuli to investigate emerging multicellular crosstalk during disease and injury.ISSN:1940-087

    Tendon explant models for physiologically relevant in vitro study of tissue biology - a perspective

    No full text
    Background: Tendon disorders increasingly afflict our aging society but we lack the scientific understanding to clinically address them. Clinically relevant models of tendon disease are urgently needed as established small animal models of tendinopathy fail to capture essential aspects of the disease. Two-dimensional and three-dimensional cell and tissue culture models are similarly limited, lacking many physiological extracellular matrix cues required to maintain tissue homeostasis or guide matrix remodeling. These cues reflect the biochemical and biomechanical status of the tissue, and encode information regarding the mechanical and metabolic competence of the tissue. Tendon explants overcome some of these limitations and have thus emerged as a valuable tool for the discovery and study of mechanisms associated with tendon homeostasis and pathophysiology. Tendon explants retain native cell-cell and cell-matrix connections, while allowing highly reproducible experimental control over extrinsic factors like mechanical loading and nutritional availability. In this sense tendon explant models can deliver insights that are otherwise impossible to obtain from in vivo animal or in vitro cell culture models. Purpose: In this review, we aimed to provide an overview of tissue explant models used in tendon research, with a specific focus on the value of explant culture systems for the controlled study of the tendon core tissue. We discuss their advantages, limitations and potential future utility. We include suggestions and technical recommendations for the successful use of tendon explant cultures and conclude with an outlook on how explant models may be leveraged with state-of-the-art biotechnologies to propel our understanding of tendon physiology and pathology

    Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies

    Get PDF
    PURPOSE Dorsal screw-rod instrumentations are used for a variety of spinal disorders. Cross-links (CL) can be added to such constructs, however, no clear recommendations exist. This study aims to provide an overview of the available evidence on the effectiveness of CL, potentially allowing to formulate recommendations on their use. METHODS A systematic literature review was performed on PubMed and 37 original articles were included and grouped into mechanical, biomechanical, finite element and clinical studies. The change in range of motion (ROM) was analyzed in mechanical and biomechanical studies, ROM, stiffness and stress distribution were evaluated in finite element studies and clinical outcome parameters were analyzed in clinical studies. RESULTS A relative consistent reduction in ROM in axial rotation with CL-augmentation was reported, while minor and less consistent effects were observed in flexion-extension and lateral bending. The use of CLs was clinical beneficial in C1/2 fusion, while the limited clinical studies on other anatomic regions show no significant benefit for CL-augmentation. CONCLUSION While CL provides some additional axial rotation stability in most situations, lateral bending and flexion-extension are less affected. Based on clinical data, CL-augmentation can only be recommended for C1/2 instrumentations, while for other cases, further clinical studies are needed to allow for evidence-based recommendations

    Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model

    No full text
    Background Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion. Purpose This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons. Study design Controlled laboratory study Methods Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection. Results Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM). Conclusion Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery. Clinical relevance This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.ISSN:1932-620

    Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon

    No full text
    Mechanical properties of biological tissues are of key importance for proper function and in situ methods for mechanical characterization are sought after in the context of both medical diagnosis as well as understanding of pathophysiological processes. Shear wave elastography (SWE) and accompanying physical modelling methods provide valid estimates of stiffness in quasi-linear viscoelastic, isotropic tissue but suffer from limitations in assessing non-linear viscoelastic or anisotropic material, such as tendon. Indeed, mathematical modelling predicts the longitudinal shear wave velocity to be unaffected by the tensile but rather the shear viscoelasticity. Here, we employ a heuristic experimental testing approach to the problem to assess the most important potential confounders, namely tendon mass density and diameter, and to investigate associations between tendon tensile viscoelasticity with shear wave descriptors. Small oscillatory testing of animal flexor tendons at two baseline stress levels over a large frequency range comprehensively characterized tensile viscoelastic behavior. A broad set of shear wave descriptors was retrieved on the unloaded tendon based on high frame-rate plane wave ultrasound after applying an acoustic deformation impulse. Tensile modulus and strain energy dissipation increased logarithmically and linearly, respectively, with the frequency of the applied strain. Shear wave descriptors were mostly unaffected by tendon diameter but were highly sensitive to tendon mass density. Shear wave group and phase velocity showed no association with tensile elasticity or strain rate-stiffening but did show an association with tensile strain energy dissipation. The longitudinal shear wave velocity may not characterize tensile elasticity but rather tensile viscous properties of transversely isotropic collagenous tissues.ISSN:0021-9290ISSN:1873-238

    Sharp-edge-based acoustofluidic chip capable of programmable pumping, mixing, cell focusing and trapping

    No full text
    Precise manipulation of fluids and objects on the microscale is seldom a simple task, but, nevertheless, crucial for many applications in life sciences and chemical engineering. We present a microfluidic chip fabricated in silicon–glass, featuring one or several pairs of acoustically excited sharp edges at side channels that drive a pumping flow throughout the chip and produce a strong mixing flow in their vicinity. The chip is simultaneously capable of focusing cells and microparticles that are suspended in the flow. The multifunctional micropump provides a continuous flow across a wide range of excitation frequencies (80 kHz–2 MHz), with flow rates ranging from nl min−1 to μl min−1, depending on the excitation parameters. In the low-voltage regime, the flow rate depends quadratically on the voltage applied to the piezoelectric transducer, making the pump programmable. The behavior in the system is elucidated with finite element method simulations, which are in good agreement with experimentally observed behavior. The acoustic radiation force arising due to a fluidic channel resonance is responsible for the focusing of cells and microparticles, while the streaming produced by the pair of sharp edges generates the pumping and the mixing flow. If cell focusing is detrimental for a certain application, it can also be avoided by exciting the system away from the resonance frequency of the fluidic channel. The device, with its unique bundle of functionalities, displays great potential for various biochemical applications.ISSN:1070-6631ISSN:1089-7666ISSN:0031-917
    • …
    corecore