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Abstract

Purpose Dorsal screw-rod instrumentations are used for a variety of spinal disorders. Cross-links (CL) can be added to such 

constructs, however, no clear recommendations exist. This study aims to provide an overview of the available evidence on 

the effectiveness of CL, potentially allowing to formulate recommendations on their use.

Methods A systematic literature review was performed on PubMed and 37 original articles were included and grouped 

into mechanical, biomechanical, finite element and clinical studies. The change in range of motion (ROM) was analyzed in 

mechanical and biomechanical studies, ROM, stiffness and stress distribution were evaluated in finite element studies and 

clinical outcome parameters were analyzed in clinical studies.

Results A relative consistent reduction in ROM in axial rotation with CL-augmentation was reported, while minor and less 

consistent effects were observed in flexion–extension and lateral bending. The use of CLs was clinical beneficial in C1/2 

fusion, while the limited clinical studies on other anatomic regions show no significant benefit for CL-augmentation.

Conclusion While CL provides some additional axial rotation stability in most situations, lateral bending and flexion–exten-

sion are less affected. Based on clinical data, CL-augmentation can only be recommended for C1/2 instrumentations, while 

for other cases, further clinical studies are needed to allow for evidence-based recommendations.

Keyword Cross-link · Transfixation · Transverse connector · Dorsal instrumentation · Spine · Systematic review

Abbreviations

AR  Axial rotation

CL  Cross-link

dS-S CL  Diagonal screw-screw cross-links

FE  Flexion–extension

hR-R CL  Horizontal rod-rod cross-links

hS-S CL  Horizontal screw-screw cross-links

LB  Lateral bending

ROM  Range of motion

Introduction

Dorsal instrumentation is an effective tool in the surgical 

treatment of various spinal disorders. It is generally based 

on a screw-rod construct composed of pedicle or lateral mass 

screws combined with vertically oriented connecting rods. 

It has been shown that the rigidity of instrumentations cor-

relates with fusion rate [1] and consequently, high rigid-

ity in all loading directions is aspired. A large plethora of 

implants like plates, hooks, cerclages, cross-links and inter-

body devices were developed to be added to a dorsal screw-

rod construct or to be used as a substitute for certain parts 

of such constructs. Finally, the configuration chosen must 

be safe and effective, and therefore, the optimal compromise 

between construct rigidity, surgical exposure, surgical time 

and implant cost must be aspired.

Cross-links (CL), connecting the contralateral rods or 

screw heads, can be added to virtually all configurations of 

dorsal instrumentation. Despite a large amount of the lit-

erature on CL, its application remains controversial in the 

clinical practice, since the biomechanical benefit must be 
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weighed against the additional implant, larger exposure, 

increased surgical time and implant cost. So far, guidelines 

on the use of CL-augmentation in dorsal screw-rod con-

structs are lacking.

The aim of this systematic review was to provide an 

overview of the mechanical, biomechanical, numerical and 

clinical effect of CL-augmentation on dorsal screw-rod con-

structs. This information could help develop recommenda-

tions for the use of CLs in specific clinical situations.

Materials and methods

A systematic review in accordance with the PRISMA state-

ment was conducted on PubMed (https ://www.ncbi.nlm.

nih.gov/pubme d/) with the search terms “crosslink spine”, 

cross-link spine”, “transfixation spine” and “transverse 

connector spine” on July 2019. Excluding duplicates, 195 

studies were identified and evaluated in accordance with 

the process shown in Fig. 1. Abstracts, case reports and 

conference presentations as well as studies on instrumen-

tations other than dorsal screw-rod constructs and studies 

not analyzing the effect of CL were excluded. Studies in 

languages other than English or German, and studies pub-

lished before 1990 were excluded as well. To be included 

into the review, studies had to compare dorsal screw-rod 

constructs with the same construct with one or more CLs 

within a mechanical or biomechanical setting, or they had 

to compare clinical outcome parameters of patients treated 

with dorsal instrumentations with or without CLs. Studies 

found through reference lists were evaluated with the same 

process. The included studies were grouped into mechani-

cal experiments on synthetic bone models, biomechanical 

experiments on animal cadavers, biomechanical experi-

ments on human cadavers, finite element simulations and 

in vivo studies with human patients.

Most mechanical and biomechanical studies reported 

the relative change in range of motion (ROM) due to addi-

tion of the CL as their primary outcome parameter [2–18]. 

Most other studies [19–26] reported change in stiffness 

over the whole loading magnitude. In these cases, the 

change in stiffness was converted into change in ROM 

for better comparability. Other outcome parameters like 

change in neutral zone, stiff zone and lax zone were not 

incorporated into the review. To reduce the amount of 

data, independently reported values for flexion and exten-

sion were pooled to one value for flexion–extension (FE). 

The types of CL were grouped into horizontal rod-rod 

cross-links (hR-R CL), horizontal screw-screw cross-links 

(hS-S CL) and diagonal screw-screw cross-links (dS-S 

CL) (Fig. 2).

Fig. 1  Flowchart of search strategy

Fig. 2  Illustration of the three 

primary types of cross-links 

used in the here included studies

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
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Results

Biomechanical studies on synthetic bone models

Four studies analyzed the effect of CL using synthetic bone 

models [2, 19–21] (Table 1). All four studies added one and 

two hR-R CL to synthetic models instrumented with a dor-

sal pedicle screw-rod construct. The results of three studies 

were converted from stiffness values to relative change in 

ROM (Fig. 3) [19–21]

A significant decrease in AR-ROM of up to 31% for one 

and up to 44% for two regular hR-R CL was reported. In FE, 

ROM was measured to be reduced less than 8% with one and 

less than 12% with two regular R-R CL. Minimal changes 

in LB-ROM were reported with one and two regular hR-R 

CL. In two of the studies, the effect of vertical rod length 

was investigated [2, 20]. Both studies demonstrated that AR-

rigidity decreases with longer construct, while the addition 

of a hR-R CL had a stronger effect on such longer and more 

unstable constructs [2, 20]. Custom built cross-links with 

very large cross-sectional areas were observed to be more 

effective in AR and FE compared to regular cross-links [20].

Biomechanical studies on animal cadavers

Eight biomechanical studies on animal cadavers were 

included [3, 11, 12, 22–25, 27] (Table 2). Three studies were 

performed on porcine and five studies on calf cadavers. Ver-

tebrae originated from the thoracic, the thoracolumbar and 

the lumbar spine. Uni-segmental as well as multi-level (seg-

mental and non-segmental) instrumentations were analyzed. 

Reported changes in stiffness were converted into ROM for 

four studies [22, 24, 25, 27].

The application of one hR-R CL led to a reduction in AR-

ROM ranging from 5 to 59%, while the addition of two hR-R 

CL reduced AR-ROM between 10 and 30%. In FE, one hR-R 

CL led to a reduction in ROM from − 1 to 18%, while two 

hR-R CL reduced ROM from 1 to 6%. In LB, one hR-R CL 

reduced ROM from 1 to 16%, while two hR-R CL reduced 

ROM from 8 to 14% (Fig. 4).

Comparing the effectiveness of hR-R CL on single-level 

to multi-level instrumentations, here,  the included animal 

cadaver studies did not show a consistent difference. The 

effect of hR-R CL was more pronounced in segmental than 

in non-segmental instrumentations in LB [24]. This trend 

Fig. 3  The change in range of motion (ROM) due to the addition 

of one and two horizontal rod-rod cross-links (1 CL) are plotted for 

axial rotation, flexion–extension and lateral bending for the mechani-

cal studies performed on synthetic bone models. Changes reported as 

statistically significant are marked with an asterisk (*)

Fig. 4  The change in range of motion (ROM) due to the addition of 

one and two horizontal cross-links (1 CL) are plotted for axial rota-

tion, flexion–extension and lateral bending for all biomechanical stud-

ies on animal cadavers. Changes reported as statistically significant in 

the studies are marked with an asterisk (*)
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was however not seen to the same extent in AR, FE and AC 

[24, 27].

One study compared different CL-configurations: double 

hR-R CL, double hS-S CL and double dS-S CL. The greatest 

increase in AR-stability was observed with double dS-S CL, 

followed by double hS-S CL and double hR-R CL [22]. In 

another study, however, single hS-S CL was observed to be 

more effective in AR and LB compared to single dS-S CL, 

while the opposite relation was observed for FE [12].

Biomechanical studies on human cadavers

Fifteen biomechanical studies with human cadavers were 

included. They were grouped into occipitocervical [13, 14], 

cervical [15, 17, 18, 28], cervicothoracic [4], thoracic [5, 

16], thoracolumbar [6–8, 26] and lumbar [9, 10] (Table 3). 

All studies used either hR-R CL or hS-S CL. Conversion 

from stiffness to ROM was done for one study (Fig. 5) [26].

Occipitocervical

Two studies analyzed the effect of CL-augmentation on 

dorsal occipitocervical instrumentations [13, 14]. In both 

studies, the effect of one hR-R CL on the ROM was reported 

to be non-significant. Specific values were however not pro-

vided in the manuscripts.

Cervical

Of the four biomechanical studies on human cervical 

spines, two analyzed the effect of CL on the atlantoaxial 

region with one study using C1 and C3 lateral mass screws 

[15] and the other using a special implant configuration at 

C1–C2 [28]. In both studies, the addition of one hR-R CL 

reduced ROM in AR in the presence of an odontoidectomy 

significantly (−54% and −37%, respectively). The effect of 

CL in the intact situation (without odontoidectomy) was 

not quantified in the first and described as non-significant 

in the second study (− 15%). LB-ROM was reduced sig-

nificantly in the second study only in the odontoidectomy 

situation (− 43%), while the effect was non-significant in 

the first study (− 13%) and in the intact situation of the 

second study (−24%). The effects in FE were non-signifi-

cant in both studies with values below − 21%.

The effect of different CL locations and types of CL on 

the ROM of C3–C7 lateral mass screw instrumentations 

was analyzed in another study [17]. Without laminectomy, 

no CL-configuration changed the ROM in a statistically 

significant way. After laminectomy, however, the addition 

of two CL in three of the tested configurations led to a 

significant reduction of ROM in AR. The two types of CL 

used in this study (hS-S CL, hR-R CL) showed no statisti-

cally significant difference in effectiveness [17].

Analyzing the cervical region with C3–C6 lateral mass 

screws and pedicle screws at C7, a significant reduction 

in AR-ROM with one (− 29%) and two hS-S CL (− 44%) 

as well as a significant reduction of LB-ROM with two 

hS-S CL (− 13%) was observed in both, the intact and the 

destabilized situation [18]. The relative effect of the CL 

remained relatively constant with an increasing extent of 

decompression and facetectomy [18].

Fig. 5  The change in range of motion (ROM) due to the addition 

of one and two horizontal rod-rod cross-links (1 CL) are plotted for 

axial rotation, flexion–extension and lateral bending for all biome-

chanical studies on human cadavers. Changes reported as statistically 

significant in the studies are marked with an asterisk (*)
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Cervicothoracic

In dorsal instrumentations of C6–T2, the addition of 2 h-R 

CL led to a significant reduction in AR-ROM in the 3-col-

umn injury model at C7/T1 (− 27%). A similar trend was 

observed in the 2-column-injury model at C7/T1. Thoracic 

hR-R CL showed a trend of being more effective than the 

cervical hR-R CL [4].

Thoracic

In thoracic instrumentations of T4–T10, the addition of one 

and two hR-R CL reduced ROM significantly (average 21% 

for one and 34% for two CL) [5]. In LB and FE, the addition 

of one and two hR-R CL did not reduce the ROM signifi-

cantly [5]. Analogously, another study analyzing the same 

anatomical region with an additional pedicle subtraction 

osteotomy at T7 found a reduction of AR-ROM with one 

(26%, ns.) and two hR-R CL (48%, *), while no relevant 

effect was observed in FE and LB [16].

Thoracolumbar

The thoracolumbar region has been investigated in four 

biomechanical studies performed on human cadaveric 

spines [6–8, 26]. In testing of embalmed specimens, com-

pletely destabilized at L1 and instrumented at T12 and 

L2, the addition of one and two CL decreased ROM in 

AR up to 38% and in LB up to 89%, whereas only a sub-

group of the differences were statistically significant [26]. 

In another study on specimens destabilized and dorsally 

instrumented at T12/L1, the addition of one hR-R CL 

reduced ROM significantly in AR (21%), while LB and 

FE were not affected to the same extent [7]. In a study on 

Table 1  Biomechanical studies on synthetic bone models

(*) Difference described as statistically significant, (n.s.) difference described as non-significant, (1) values converted from stiffness to range of 

motion, (2) values for different CL-configurations

Study Material Test samples CL Load Change in ROM

Dick 1997 Polyurethane models Single-level dorsal instru-

mentation (5 different 

products) on L3/L4 

models

5 types of hR-R CL, 1/2 AR ± 5 Nm 

(with 50 N 

AC)

− 31% (*)/− 41% (*) (1) (2)

FE ± 2 Nm − 2% (n.s.) /– 2% (n.s.) (1) 

(2)

LB ± 2 Nm  + 1% (n.s.)/− 3% (n.s.) (1) 

(2)

AC 250 N  + 1% (n.s.) / + 0% (n.s.) 

(1) (2)

Korovessis 2001 PMMA blocks Single-level dorsal 

instrumentation (2 dif-

ferent products) on two 

blocks simulating lumbar 

vertebrae, vertical stain-

less steel and titanium 

rods with 10- and 15-cm 

length

1/2 h-R CL AR − 28% (*)/− 44% (*) (1) (2)

FE − 8% (*)/− 12% (*) (1) (2)

1 custom hR-R CL (two 

types)

AR − 37% (*)/− 62% (*) (1) (2)

FE − 17% (*)/− 26% (*) (1) (2)

Peltier 2017 Wood model Single-level dorsal instru-

mentation on T11-L2 

model

1/2 h-R CL AR ± 7.5 Nm − 24% (*)/− 30% (*) (1) (2)

FE ± 7.5 Nm No values reported

LB ± 7.5 Nm No values reported

Pintar 1995 PMMA blocks Single-level dorsal 

instrumentation on two 

blocks simulating lumbar 

vertebrae, vertical rods 

with different lengths 

(4–18 cm) and different 

placement

1/2 h-R CL AR ± 12 Nm − max. 21%/− max. 27% (2)
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cadavers with corpectomy and spacer instrumentation at 

T12, the addition of one hR-R CL to two different types 

of dorsal instrumentations led to a reduction in AR-ROM 

of 44% and 51%, while the effect in LB and FE was below 

18% and 12%, respectively [6]. ROM after T12 corpec-

tomy and instrumentations at T11 and L1 was significantly 

reduced in AR by the addition of one and two CL (16% 

and 31%, respectively), while the effects in FE and LB 

were non-significant [8].

Lumbar

The biomechanical effects on the lumbar spine have been 

investigated by two groups [9, 10]. In destabilized speci-

mens at L3/4 and L4/5, the addition of one hR-R CL to a 

dorsal instrumentation at L3 and L5 reduced ROM in AR 

significantly (21%) only with CoCr vertical rods, while the 

effect with Titanium rods was similar (18%), but statisti-

cally non-significant. The non-significant effects in FE and 

LB were below 1% and 4%, respectively [9]. In specimens 

with corpectomy L3 and dorsal instrumentation at L2 and 

L4, the change in ROM due to one hR-R CL was not altered 

significantly in AR, LB and FE, while the observed effect 

was most prominent in LB with 16% [10].

Biomechanical studies with numerical simulations

Six studies were included that used finite element simula-

tions to evaluate the biomechanical effect of CL-augmenta-

tion on dorsal instrumentations [11, 12, 29–32] (Table 4). 

One study focused on the thoracolumbar region [29], four 

studies on the lumbar region [11, 12, 30, 31], and one study 

evaluated a long instrumentation from T1-sacrum [32]. The 

values reported for change in ROM are illustrated in Fig. 6.

One study analyzed the stiffness of constructs with one 

hR-R CL, one dR-R- CL and two dR-R CL (X-shaped) 

effects of CL on longer constructs, while the largest effect 

was seen in AR and LB when simulating the augmentation 

with an X-shaped CL configuration.[29].

Bone loads (von Mises) were observed to decrease with 

the use of a CL [12, 29]. Similarly, loads (von Mises) on 

the pedicle screw neck decreased [29]. This is opposed by 

another study in which a general increase in screw loads 

(strain energy) in AR and LB was observed [12]. Peak loads 

(peak von Mises) on the vertical rod were seen to increase in 

one study [31], while another study calculated better stress 

dispersion on the rod in situations with CL-implantation 

[32].

Regarding optimal CL-positions, larger effects on the 

rigidity were computed for placement in the proximal part 

of the construct [11, 33] and at an osteotomy-site [33].Ta
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In vivo studies

Six in  vivo studies on human patients were identified 

[33–38] (Table 5). Two studies were performed on atlan-

toaxial instrumentations and found earlier bony fusion in 

the hS-S CL group [34] and in the hR-R CL group [33] 

compared to the no-CL groups. Furthermore, favorable 

neurological scores were observed in the hR-R CL group 

compared to the no-CL group [33].

In the thoracolumbar region, two studies on patients with 

adolescent idiopathic scoliosis treated with dorsal instru-

mentations found no clinical, radiologic or surgical differ-

ences for the groups with and without hR-R CL [36, 37]. 

Another study suggests to omit CL-augmentation since no 

rotational instability was observed without the use of CL 

[38]. Comparing the effectiveness of different types of CL, 

lower reoperation rates were observed in closed drop entry 

CL compared to other types of CL [35].

Table 4  Biomechanical studies with numerical simulations

(*) Difference described as statistically significant, (1) values for different CL-configurations, (2) values for different instrumentations, (3) values 

for flexion and extension combined to FE, (4) values for regular and weak bone, respectively

Study Level Test sample CL Load Outcome Results

Alizadeh 2013 Thoraco-lumbar Dorsal instrumenta-

tion T12–L2 on one 

human model T11–

L3 with simulated L1 

burst fracture

1 h-R/1 dR-R/2 

(X-shaped) dR-R CL

AR ± 7.5 Nm (200 N 

AC)

Stiffness  ~ 0% / ~ 0% / ~ 0% (1) 

(3)

FE ± 7.5 Nm (200 N 

AC)

Stiffness  + 3% / + 4%/ + 8% 

(1) (3)

LB ± 7.5 Nm (200 N 

AC)

Stiffness  ~ 0% / ~ 0% / ~  + 5% 

(1) (3)

Dorsal instrumenta-

tion T11–L3 on one 

human model T11–

L3 with simulated L1 

burst fracture

1 h-R/1 dR-R/2 

(X-shaped) dR-R CL

AR ± 7.5 Nm (200 N 

AC)

Stiffness  + 25% / + 14% / + 40% 

(1) (3)

FE ± 7.5 Nm (200 N 

AC)

Stiffness  + 10% / + 12% / + 18% 

(1) (3)

LB ± 7.5 Nm (200 N 

AC)

Stiffness  ~  + 5% / ~ − 5% 

/ ~  + 45% (1) (3)

Fan 2010 Lumbar One human L3–L5 

model with ALIF 

and posterior 

instrumentation at 

L3 and L5, four con-

figurations: normal, 

without ligaments, 

without annulus 

fiber, weak bone

1 h-R CL AR ± 7.5 Nm (200 N 

AC)

ROM − 20% /− 18% (3) (4)

FE ± 7.5 Nm (200 N 

AC)

ROM − 2% /− 10% (3) (4)

LB ± 7.5 Nm (200 N 

AC)

ROM − 7% /− 7% (3) (4)

Lim 1996 Lumbar Single-level dorsal 

instrumentation after 

total discectomy

1 h-R CL AR ± 5 Nm ROM − 24%

LB ± 5 Nm ROM − 3%

Two-level dorsal 

instrumentation after 

corpectomy

1/2 h-R CL AR ± 5 Nm ROM − 16% /− 27% (1)

LB ± 5 Nm ROM − 3% /− 6% (1)

Lim 2001 Lumbar Dorsal instrumentation 

at simulated L3/L4 

segment with com-

plete destabilization

1 h-R/1 d R-R CL AR ± 8.2 Nm ROM − 30% /− 19% (1) (3)

FE ± 8.2 Nm ROM − 0% /− 16% (1) (3)

LB ± 8.2 Nm ROM − 24% /− 14% (1) (3)

Park 2019 Lumbar One human model 

L1-sacrum with 

pedicle subtraction 

osteotomy at L4 and 

dorsal instrumenta-

tion L1–L5

1 h-R CL AR ± 10 Nm (400 N 

AC)

PVMS No significant effect

FE ± 10 Nm (400 N 

AC)

PVMS  + 16% (*)

LB ± 10 Nm (400 N 

AC)

PVMS No significant effect

Wang 2018 Thorax-sacrum One human model 

T1-Sacrum with 

osteotomy at L1 and 

dorsal instrumenta-

tion from T10 to L4

1/2/3 h-R CL at differ-

ent positions

AR ± 10 Nm (280 N 

AC)

ROM − 22% /− 22% /− 22% 

(1) (3)

FE ± 10 Nm (280 N 

AC)

ROM − 2% /− 4% /− 6% (1) 

(3)

LB ± 10 Nm (280 N 

AC)

ROM − 3% /− 6% /− 9% (1) 

(3)
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Discussion

The stability of dorsal instrumentation is of great impor-

tance for bony fusion and consequently for a good clinical 

outcome [1]. To achieve the required stiffness, a plethora 

of augmenting components like interbody cages, pedicle 

hooks, cerclages, end-to-end and side-to-side connec-

tors as well as CLs have been proposed for the use in 

certain clinical settings. For the application of CLs, no 

clear recommendations or guidelines exist, and the use 

of these components is based on the subjective evalua-

tion of the surgeon. The addition of elements to a bio-

mechanical construct can be argued to generally increase 

stability, while also cost, surgical exposure, surgical time 

and additional foreign body implantation have to be con-

sidered and weighed against the beneficial effects. The 

aim of this systematic review was to create an overview 

of the effect of CL-augmentation to contribute to a more 

informed decision on whether or not to include CL in dor-

sal instrumentations.

Synthetic models

Synthetic models, having the advantage of eliminating ana-

tomical variability, show a clear effect of horizontal R-R 

CL with up to 30% reduction in ROM in axial rotation. The 

effects in FE and LB were found to be much smaller with 

values below 12% and 3%, respectively.

Animal cadaver studies

Animal cadaver studies show very similar results to the syn-

thetic models with the largest effect of CL-augmentation in 

AR. While these studies integrate factors like the screw-

bone interface, morphology and bone density can vary from 

humans.

Human cadaver studies

The biomechanical studies on the different parts of the 

human spine showed similar results with the largest effects 

of CL-augmentation being observed in AR, while only mini-

mal effects were recorded in FE and more irregular results 

were observed in LB.

Numeric simulations

The general stress in the vertebral bodies and the mean stress 

in the instrumentations were observed to be reduced by CL-

augmentation. However, peak loads and stress accumulation 

in the vertical rods were increased, which might be problem-

atic in situations where material failure poses a problem.

Several generally applicable biomechanical observations 

can be stated:

• CL-augmentation adds stability to the construct mainly 

in AR.

• Two CLs are more effective than a single CL [2, 4, 5, 8, 

11, 16, 17, 19–21, 26].

• A CL with a larger cross section is more effective than a 

smaller one [19, 20].

• Longer single-level constructs are less rigid in AR and 

CL-augmentation is more effective in such situations [2, 

20].

• In destabilized situations, CL-augmentation is observed 

to be more effective by the majority of studies [3, 15, 17, 

28], while this correlation was less evident in other stud-

ies [4, 14, 18].

• CLs are not more effective in multi-level constructs (seg-

mental and non-segmental) compared to single-level con-

structs [24, 27, 39].

• CLs do not provide the same stability as segmental 

screws in multi-level instrumentations [39].

• The biomechanical effectiveness of screw-screw and rod-

rod CLs is generally not different [17].

Fig. 6  The change in range of motion (ROM) due to the addition of one, two and three horizontal cross-links (Nr. CL) are plotted for axial rota-

tion, flexion–extension and lateral bending for the finite element simulations
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• Diagonal CL shows higher effectiveness in FE and LB, 

while horizontal CL are more effective in AR [12, 29].

Based on the mechanical, biomechanical and numerical 

studies, we evaluate the effectiveness of CL to be based on 

the prevention of shear deformation of the screw-rod con-

struct, also described as the “windshield wiper” effect. As 

illustrated in Fig. 7, such deformation primarily occurs dur-

ing AR, less during LB and only minimally during FE. In 

conclusion, the largest effect of CL-augmentation can be 

expected in AR, less in LB and only minimal effects in FE, 

which agrees with the literature.

Although in vitro experiments are crucial to understand 

and predict the biomechanical effect of CL-augmentation, 

this information is not sufficient to predict the effect on 

clinical outcome. To answer this question, in vivo stud-

ies are indispensable, however, only a limited number of 

studies is available. In the setting of C1/2-instrumentation, 

CL-augmentation has been observed to result in earlier 

bony fusion, superior clinical outcome and in no additional 

complications. The reduced number of clinical and radio-

logic follow-up controls and the improved patient satisfac-

tion was stated to possibly compensate for the additional 

cost of about 1000 dollars per CL [33, 34]. In retrospective 

analysis, CL-augmented instrumentations in idiopathic sco-

liosis patients were not associated with a better clinical or 

radiologic outcome [36, 37]. While biomechanically, CLs 

provide some benefits in such constructs, CL-augmentation 

was also observed to be associated with soft tissue irrita-

tion and delayed infection [40] and with an increased risk 

of pseudarthrosis due to the reduced bone graft volume at 

the CL position [41].

In conclusion, based on clinical data, the general use of 

CL-augmentation can only be recommended for C1/2 instru-

mentations. In the surgical treatment of idiopathic scolio-

sis, CL-augmentation cannot be recommended as a standard 

measure. Based on biomechanical studies, an increase in 

AR-stability can be expected for many other clinical situ-

ations, however, no clinical data is available. The increase 

in AR-stability could be especially beneficial in situation of 

relevant AR-instability (e.g., after bilateral facetectomy), 

however, due to the fact that CL-augmentations provides 

potential drawbacks, such as the risk of irritation, delayed 

infection, pseudoarthrosis, increased costs, surgery time 

and exposure, clear clinical evidence is required to justify 

the usage of CL. Therefore, further clinical research on this 

topic is strongly suggested to further assess the benefit of 

CL in distinct clinical situations and to legitimate its usage.
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