662 research outputs found

    NASTRAN used in a production environment

    Get PDF
    A finite element analysis procedure built around the NASTRAN system is assessed. A number of support programs that were either written or modified to interface with NASTRAN and some improvements that were made to NASTRAN itself are noted. Some typical models are analyzed and an actual schedule is followed for constructing and analyzing the models to support a large design program

    Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    Get PDF
    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions

    Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments

    Get PDF
    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections

    Mineralogy and Oxygen Isotope Compositions of Two C-Rich Hydrated Interplanetary Dust Particles

    Get PDF
    Oxygen isotopic compositions of chondrites reflect mixing between a O-16-rich reservoir and a O-17,O-18-rich reservoir produced via mass-independent fractionation. The composition of the O-16-rich reservoir is reasonably well constrained, but material representing the O-17,O-18-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in O-17 and O-18 18O by > 200%. Hydrated interplanetary dust particles (IDPs) rich in carbonaceous matter may be derived from comets; such particles likely contain the products of reaction between O-16-poor water and anhydrous silicates that formed in the inner solar system. Here we present mineralogy and oxygen isotope compositions of two C-rich hydrated IDPs, L2083E47 and L2071E35

    Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Get PDF
    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL

    Precision Oxygen Isotope Measurements of Two C-Rich Hydrated Interplanetary Dust Particles

    Get PDF
    Introduction: Chondritic-smooth IDPs (Interplanetary Dust Particles) are low porosity objects whose mineralogy is dominated by aqueous alteration products such as Mg-rich phyllosilicates (smectite and serpentine group) and Mg-Fe carbonate minerals. Their hydrated mineralogy combined with low atmospheric entry velocities have been used to infer an origin largely from asteroidal sources. Spectroscopic studies show that the types and abundance of organic matter in CS IDPs is similar to that in CP IDPs. Although CS IDPs show broad similarities to primitive carbonaceous chondrites, only a few particles have been directly linked to specific meteorite groups such as CM and CI chondrites based on the presence of diagnostic minerals. Many CS IDPs however, have carbon contents that greatly exceed that of known meteorite groups suggesting that they either may derive from comets or represent samples of more primitive parent bodies than do meteorites. It is now recognized that many large, dark primitive asteroids in the outer main belt, as well as some trans-Neptunian objects, show spectroscopic evidence for aqueous alteration products on their surfaces. Some CS IDPs exhibit large bulk D enrichments similar to those observed in the cometary CP IDPs. While hydrated minerals in comets have not been unambiguously identified to date, the presence of the smectite group mineral nontronite has been inferred from infrared spectra obtained from the ejecta from comet 9P/Tempel 1 during the Deep Impact mission. Recent observations of low temperature sulfide minerals in Stardust mission samples suggest that limited aqueous activity occurred on comet Wild-2. All of these observations, taken together, suggest that the high-carbon hydrated IDPs are abundant and important samples of primitive solar system objects not represented in meteorite collections. Oxygen isotopic compositions of chondrites reflect mixing between a 16O-rich reservoir and a 17O,18O-rich reservoir produced via mass-independent fractionation. The composition of the 16O-rich reservoir is well constrained but material representing the 17O,18O-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in 17O and 18O by greater than 200 per mille. The high-carbon hydrated IDPs may be among the best materials available to search for preserved "cometary" H2O signatures. In order to better understand the origin and evolution of these particles, we have obtained 10 hydrated interplanetary dust particles for coordinated mineralogical, isotopic and organic analyses. We have previously reported the results of mineralogical and O isotopic measurements of two hydrated IDPs; here we present results of O isotopic measurements of three additional IDPs. Samples and Methods: Three interplanetary dust particles (L2079C35, L2083D46 and L2083E46) were embedded in S and partially ultramicrotomed into approximately 70 nanometer sections for analysis via transmission electron microscopy (TEM). The remainders of the unsliced particles were removed from S and pressed into high purity Au foil that was cleaned with HF acid and annealed at 800 degrees Centigrade. The pressed IDPs were analyzed via electron microprobe analysis (EPMA) for quantitative bulk chemical analysis. After EPMA analysis, the IDPs were subjected to precision O isotope analysis with the UCLA Cameca IMS-1270 ion probe. A 20 kiloelectronvolt, 0.5 nanoangstrom Cs+ primary beam of approximately 15 micrometers diameter was used for each measurement. Small particles of San Carlos olivine and Burma spinel were pressed into the Au foil for use as standards to correct for instrumental mass fractionation. The detection system was configured for multicollection, with 16O measured on a Faraday cup, and 17O and 18O measured on electron multipliers (EMs). Individual analyses consisted of 15 cycles of 10 seconds per cycle. Additionally, two microtome thin sections were measured for H isotopic compositions with the JSC NanoSIMS 50L ion probe. An 8 picoangstrom, 16 kiloelectronvolt Cs plus primary beam was used. Measurements consisted of H, C, 12C, 16O, and 18O collected with EMs in multicollection. Terrestrial biotite and kerogen were used for isotopic standards. A significant challenge in O isotope measurement of hydrated minerals is the interference from 16OH at mass 17O. We ensured that the 17O and 16OH peaks were fully resolved by using a mass resolution of greater than 7000 and by careful analyses of San Carlos olivine, Burma spinel and chlorite hydrated mineral standards. The hydride was further suppressed with a cold finger attached to an LN2 dewar to trap volatiles in the sample chamber. All sputtered ions were counted (i.e. presputtering was not used); after applying background, yield and deadtime corrections, we performed a change-point analysis on our data via R in order to determine when the sample reached sputtering equilibrium; data points collected prior to the change point were excluded. Change-point analysis was also used to determine whether the IDP had completely sputtered. Results: Mineralogy. IDPs C35 and E46 exhibited hydrated mineralogies, Fe-Ni sulfide grains, nanoglobules and occasional enstatite grains distributed throughout a fine-grained Mg-Fe saponite matrix. C35 also contained breunnerite (Mg,Fe)CO3; solar flare tracks were observed in enstatite, indicating minimal atmospheric entry heating. The mineralogy of D46 is dominated by a large FeS grain with a minor component of adhering silicate material. D46 was strongly heated during atmorpheric entry as evidenced by a well-developed magnetite rim. EPMA analyses show that both C35 and E46 have high carbon contents of 20 weight percentage (approximately 6X CI). D46 contains approximately 6 wt.weight percentage C. A significant amount of the carbon is present as carbon nanoglobules. Results: Hydrogen isotopes: Although the bulk delta D values of both sections of L2079C35 were within error of SMOW (minus 33 plus or minus 19 per mille, 1 plus or minus 14 per mille 1 sigma), several delta D-rich hotspots were also identified, reaching 2000 per mille. As shown in Fig. 1, these hotspots are clearly associated with discrete carbonaceous inclusions that are akin to nanoglobules found in many meteorites and other IDPs. Oxygen Isotopes. Results of the oxygen isotope measurements are shown in Figure 1. The oxygen isotope composition for L2079C35 was delta 18O equals plus11.6 plus or minus 1.9per mille, delta 17O equals plus 7.9 plus or minus 1.9per mille (2 standard errors). The oxygen isotope composition for L2083D46 was delta 18O equals minus 8.1 plus or minus 1.9 per mille, delta 17O equals minus 6.4 plus or minus 3.1 per mille (2 standard errors). The oxygen isotope composition for L2083E46 was delta 18O equals plus 12.0 plus or minus 1.9 per mille, delta 17O equals plus 9.2 plus or minus 2.0 per mille (2 standard errors). Discussion: Despite mineralogical similarities to highly aqueously altered carbonaceous chondrites, the hydrated IDPs we analyzed have oxygen isotopic compositions that are distinct from matrix materials in the CI, CM, and CR chondrites. The IDPs plot along the Young-Russell line, with delta 17O values for C35 and E46 suggestive of interaction with a 16O-poor reservoir. However, we have thus far not observed evidence of extreme 16O-poor reservoirs expected from self-shielding models and observed in Acfer 094 simplectite. The high carbon contents of the IDPs also set them apart from known meteoritic samples. The lack of atmospheric entry heating effects are consistent with low encounter velocities and suggest either an asteroidal source, or a low inclination, low eccentricity cometary origin. Conclusions: The unusual oxygen isotopic compositions, high carbon contents, and the abundance of Drich nanoglobules, together, suggest that the high-carbon, hydrated IDPs are derived from a primitive source that is not yet represented in meteorite collections

    Neurotransmitter alterations in embryonic succinate semialdehyde dehydrogenase (SSADH) deficiency suggest a heightened excitatory state during development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SSADH (aldehyde dehydrogenase 5a1 (Aldh5a1); γ-hydroxybutyric (GHB) aciduria) deficiency is a defect of GABA degradation in which the neuromodulators GABA and GHB accumulate. The human phenotype is that of nonprogressive encephalopathy with prominent bilateral discoloration of the globi pallidi and variable seizures, the latter displayed prominently in Aldh5a1<sup>-/- </sup>mice with lethal convulsions. Metabolic studies in murine neural tissue have revealed elevated GABA [and its derivatives succinate semialdehyde (SSA), homocarnosine (HC), 4,5-dihydroxyhexanoic acid (DHHA) and guanidinobutyrate (GB)] and GHB [and its analogue D-2-hydroxyglutarate (D-2-HG)] at birth. Because of early onset seizures and the neurostructural anomalies observed in patients, we examined metabolite features during Aldh5a1<sup>-/- </sup>embryo development.</p> <p>Methods</p> <p>Embryos were obtained from pregnant dams sacrificed at E (embryo day of life) 10–13, 14–15, 16–17, 18–19 and newborn mice. Intact embryos were extracted and metabolites quantified by isotope dilution mass spectrometry (n = 5–15 subjects, Aldh5a1<sup>+/+ </sup>and Aldh5a1<sup>-/-</sup>) for each gestational age group. Data was evaluated using the <it>t </it>test and one-way ANOVA with Tukey post hoc analysis. Significance was set at the 95<sup>th </sup>centile.</p> <p>Results</p> <p>GABA and DHHA were significantly elevated at all gestational ages in Aldh5a1<sup>-/- </sup>mice, while GB was increased only late in gestation; SSA was not elevated at any time point. GHB and D-2-HG increased in an approximately linear fashion with gestational age. Correlative studies in human amniotic fluid from SSADH-deficient pregnancies (n = 5) also revealed significantly increased GABA.</p> <p>Conclusion</p> <p>Our findings indicate early GABAergic alterations in Aldh5a1<sup>-/- </sup>mice, possibly exacerbated by other metabolites, which likely induce a heightened excitatory state that may predispose neural networks to epilepsy in these animals.</p

    Diagnostic concordance and discordance in digital pathology : a systematic review and meta-analysis

    Get PDF
    Background – Digital pathology (DP) has the potential to fundamentally change the way that histopathology is practiced, by streamlining the workflow, increasing efficiency, improving diagnostic accuracy and facilitating the platform for implementation of artificial intelligence-based computerassisted diagnostics. Although the barriers to wider adoption of digital pathology have been multifactorial, limited evidence of reliability has been a significant contributor. A meta-analysis to demonstrate the combined accuracy and reliability of DP is still lacking in the literature. Objectives – We aimed to review the published literature on the diagnostic use of DP and to synthesise a statistically pooled evidence on safety and reliability of DP for routine diagnosis (primary and secondary) in the context of validation process. Methods – A comprehensive literature search was conducted through PubMed, Medline, EMBASE, Cochrane Library and Google Scholar for studies published between 2013 and August 2019. The search protocol identified all studies comparing DP with light microscopy (LM) reporting for diagnostic purposes, predominantly including H&E stained slides. Random-effects meta-analysis was used to pool evidence from the studies. Results – Twenty five studies were deemed eligible to be included in the review which examined a total of 10,410 histology samples (average sample size 176). For overall concordance (clinical concordance) the agreement percentage was 98.3% (95% Confidence interval: 97.4 – 98.9) across 24 studies. A total of 546 major discordances were reported across 25 studies. Over half (57%) of these were related to assessment of nuclear atypia, grading of dysplasia and malignancy. These were followed by challenging diagnoses (26%) and identification of small objects (16%). Conclusion - The results of this meta-analysis indicate equivalent performance of DP in comparison to LM for routine diagnosis. Furthermore, the results provide valuable information concerning the areas of diagnostic discrepancy which may warrant particular attention in the transition to DP
    corecore