44 research outputs found

    Co-Operative Biofilm Interactions between Aspergillus fumigatus and Pseudomonas aeruginosa through Secreted Galactosaminogalactan Exopolysaccharide

    Get PDF
    The mold Aspergillus fumigatus and bacterium Pseudomonas aeruginosa form biofilms in the airways of individuals with cystic fibrosis. Biofilm formation by A. fumigatus depends on the self-produced cationic exopolysaccharide galactosaminogalactan (GAG), while P. aeruginosa biofilms can contain the cationic exopolysaccharide Pel. GAG and Pel are rendered cationic by deacetylation mediated by either the secreted deacetylase Agd3 (A. fumigatus) or the periplasmic deacetylase PelA (P. aeruginosa). Given the similarities between these polymers, the potential for biofilm interactions between these organisms were investigated. P. aeruginosa were observed to adhere to A. fumigatus hyphae in a GAG-dependent manner and to GAG-coated coverslips of A. fumigatus biofilms. In biofilm adherence assays, incubation of P. aeruginosa with A. fumigatus culture supernatants containing de-N-acetylated GAG augmented the formation of adherent P. aeruginosa biofilms, increasing protection against killing by the antibiotic colistin. Fluorescence microscopy demonstrated incorporation of GAG within P. aeruginosa biofilms, suggesting that GAG can serve as an alternate biofilm exopolysaccharide for this bacterium. In contrast, Pel-containing bacterial culture supernatants only augmented the formation of adherent A. fumigatus biofilms when antifungal inhibitory molecules were removed. This study demonstrates biofilm interaction via exopolysaccharides as a potential mechanism of co-operation between these organisms in chronic lung disease

    The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps

    Get PDF
    Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs

    Snarr, Brendan D.

    No full text

    Immune Recognition of Fungal Polysaccharides

    No full text
    The incidence of fungal infections has dramatically increased in recent years, in large part due to increased use of immunosuppressive medications, as well as aggressive medical and surgical interventions that compromise natural skin and mucosal barriers. There are relatively few currently licensed antifungal drugs, and rising resistance to these agents has led to interest in the development of novel preventative and therapeutic strategies targeting these devastating infections. One approach to combat fungal infections is to augment the host immune response towards these organisms. The polysaccharide-rich cell wall is the initial point of contact between fungi and the host immune system, and therefore, represents an important target for immunotherapeutic approaches. This review highlights the advances made in our understanding of the mechanisms by which the immune system recognizes and interacts with exopolysaccharides produced by four of the most common fungal pathogens: Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, and Histoplasma capsulatum. Work to date suggests that inner cell wall polysaccharides that play an important structural role are the most conserved across diverse members of the fungal kingdom, and elicit the strongest innate immune responses. The immune system senses these carbohydrates through receptors, such as lectins and complement proteins. In contrast, a greater diversity of polysaccharides is found within the outer cell walls of pathogenic fungi. These glycans play an important role in immune evasion, and can even induce anti-inflammatory host responses. Further study of the complex interactions between the host immune system and the fungal polysaccharides will be necessary to develop more effective therapeutic strategies, as well as to explore the use of immunosuppressive polysaccharides as therapeutic agents to modulate inflammation

    Divergent targets of Aspergillus fumigatus AcuK and AcuM transcription factors during growth in vitro versus invasive disease.

    No full text
    In Aspergillus nidulans, the AcuK and AcuM transcription factors form a complex that regulates gluconeogenesis. In Aspergillus fumigatus, AcuM governs gluconeogenesis and iron acquisition in vitro and virulence in immunosuppressed mice. However, the function of AcuK was previously unknown. Through in vitro studies, we found that A. fumigatus ΔacuK single and ΔacuK ΔacuM double mutants had impaired gluconeogenesis and iron acquisition, similar to the ΔacuM mutant. Also, the ΔacuK, ΔacuM, and ΔacuK ΔacuM mutants had similar virulence defects in mice. However, the ΔacuK mutant had a milder defect in extracellular siderophore activity and induction of epithelial cell damage in vitro than did the ΔacuM mutant. Moreover, overexpression of acuM in the ΔacuK mutant altered expression of 3 genes and partially restored growth under iron-limited conditions, suggesting that AcuM can govern some genes independently of AcuK. Although the ΔacuK and ΔacuM mutants had very similar transcriptional profiles in vitro, their transcriptional profiles during murine pulmonary infection differed both from their in vitro profiles and from each other. While AcuK and AcuM governed the expression of only a few iron-responsive genes in vivo, they influenced the expression of other virulence-related genes, such as hexA and dvrA. Therefore, in A. fumigatus, while AcuK and AcuM likely function as part of the same complex, they can also function independently of each other. Furthermore, AcuK and AcuM have different target genes in vivo than in vitro, suggesting that in vivo infection stimulates unique transcriptional regulatory pathways in A. fumigatus

    The Interface between Fungal Biofilms and Innate Immunity

    No full text
    Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific
    corecore