1,565 research outputs found

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.2−11.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm−2^{-2} to 1.3×1010 1.3\times 10^{10} cm−2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    Nanomechanical displacement detection using coherent transport in ordered and disordered graphene nanoribbon resonators

    Get PDF
    Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon resonator, coherent electron transport and mechanical deformations couple. As the electrons in graphene have a Fermi wavelength \lambda ~ a_0 = 1.4 {\AA}, this coupling can be used for sensitive displacement detection in both armchair and zigzag graphene nanoribbon NEMS. Here it is shown that for ordered as well as disordered ribbon systems of length L, a strain \epsilon ~ (w/L)^2 due to a deflection w leads to a relative change in conductance \delta G/G ~ (w^2/a_0L).Comment: 4 Pages, 4 figure

    Electromagnetics from a quasistatic perspective

    Get PDF
    Quasistatics is introduced so that it fits smoothly into the standard textbook presentation of electrodynamics. The usual path from statics to general electrodynamics is rather short and surprisingly simple. A closer look reveals however that it is not without confusing issues as has been illustrated by many contributions to this Journal. Quasistatic theory is conceptually useful by providing an intermediate level in between statics and the full set of Maxwell's equations. Quasistatics is easier than general electrodynamics and in some ways more similar to statics. It is however, in terms of interesting physics and important applications, far richer than statics. Quasistatics is much used in electromagnetic modeling, an activity that today is possible on a PC and which also has great pedagogical potential. The use of electromagnetic simulations in teaching gives additional support for the importance of quasistatics. This activity may also motivate some change of focus in the presentation of basic electrodynamics

    Fully Analyzing an Algebraic Polya Urn Model

    Get PDF
    This paper introduces and analyzes a particular class of Polya urns: balls are of two colors, can only be added (the urns are said to be additive) and at every step the same constant number of balls is added, thus only the color compositions varies (the urns are said to be balanced). These properties make this class of urns ideally suited for analysis from an "analytic combinatorics" point-of-view, following in the footsteps of Flajolet-Dumas-Puyhaubert, 2006. Through an algebraic generating function to which we apply a multiple coalescing saddle-point method, we are able to give precise asymptotic results for the probability distribution of the composition of the urn, as well as local limit law and large deviation bounds.Comment: LATIN 2012, Arequipa : Peru (2012

    Casimir-Polder interaction between an atom and a dielectric slab

    Get PDF
    We present an explicit analytic calculation of the energy-level shift of an atom in front of a non-dispersive and non-dissipative dielectric slab. We work with the fully quantized electromagnetic field, taking retardation into account. We give the shift as a two-dimensional integral and use asymptotic analysis to find expressions for it in various retarded and non-retarded limiting cases. The results can be used to estimate the energy shift of an atom close to layered microstructures.Comment: 10 pages, incl 7 figure

    Force on a neutral atom near conducting microstructures

    Get PDF
    We derive the non-retarded energy shift of a neutral atom for two different geometries. For an atom close to a cylindrical wire we find an integral representation for the energy shift, give asymptotic expressions, and interpolate numerically. For an atom close to a semi-infinite halfplane we determine the exact Green's function of the Laplace equation and use it derive the exact energy shift for an arbitrary position of the atom. These results can be used to estimate the energy shift of an atom close to etched microstructures that protrude from substrates.Comment: 7 pages, 5 figure

    Interaction of vortices in thin superconducting films and Berezinskii-Kosterlitz-Thouless transition

    Full text link
    The precondition for the BKT transition in thin superconducting films, the logarithmic intervortex interaction, is satisfied at distances short relative to Λ=2λ2/d\Lambda=2\lambda^2/d, λ\lambda is the London penetration depth of the bulk material and dd is the film thickness. For this reason, the search for the transition has been conducted in samples of the size L<ΛL<\Lambda. It is argued below that film edges turn the interaction into near exponential (short-range) thus making the BKT transition impossible. If however the substrate is superconducting and separated from the film by an insulated layer, the logarithmic intervortex interaction is recovered and the BKT transition should be observable.Comment: 4 pages, no figure

    Ion exchange phase transitions in "doped" water--filled channels

    Full text link
    Ion transport through narrow water--filled channels is impeded by a high electrostatic barrier. The latter originates from the large ratio of the dielectric constants of the water and a surrounding media. We show that ``doping'', i.e. immobile charges attached to the walls of the channel, substantially reduces the barrier. This explains why most of the biological ion channels are ``doped''. We show that at rather generic conditions the channels may undergo ion exchange phase transitions (typically of the first order). Upon such a transition a finite latent concentration of ions may either enter or leave the channel, or be exchanged between the ions of different valences. We discuss possible implications of these transitions for the Ca-vs.-Na selectivity of biological Ca channels. We also show that transport of divalent Ca ions is assisted by their fractionalization into two separate excitations.Comment: 16 pages, 27 figure

    Equation of the field lines of an axisymmetric multipole with a source surface

    Get PDF
    Optical spectropolarimeters can be used to produce maps of the surface magnetic fields of stars and hence to determine how stellar magnetic fields vary with stellar mass, rotation rate, and evolutionary stage. In particular, we now can map the surface magnetic fields of forming solar-like stars, which are still contracting under gravity and are surrounded by a disk of gas and dust. Their large scale magnetic fields are almost dipolar on some stars, and there is evidence for many higher order multipole field components on other stars. The availability of new data has renewed interest in incorporating multipolar magnetic fields into models of stellar magnetospheres. I describe the basic properties of axial multipoles of arbitrary degree ℓ and derive the equation of the field lines in spherical coordinates. The spherical magnetic field components that describe the global stellar field topology are obtained analytically assuming that currents can be neglected in the region exterior to the star, and interior to some fixed spherical equipotential surface. The field components follow from the solution of Laplace’s equation for the magnetostatic potential

    Electronic states and optical properties of PbSe nanorods and nanowires

    Full text link
    A theory of the electronic structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.Comment: 35 pages, 12 figure
    • …
    corecore