73 research outputs found

    Assessment of carbon in woody plants and soil across a vineyard-woodland landscape

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression.</p> <p>Results</p> <p>Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively.</p> <p>Conclusions</p> <p>This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.</p

    Synaptically-Competent Neurons Derived from Canine Embryonic Stem Cells by Lineage Selection with EGF and Noggin

    Get PDF
    Pluripotent stem cell lines have been generated in several domestic animal species; however, these lines traditionally show poor self-renewal and differentiation. Using canine embryonic stem cell (cESC) lines previously shown to have sufficient self-renewal capacity and potency, we generated and compared canine neural stem cell (cNSC) lines derived by lineage selection with epidermal growth factor (EGF) or Noggin along the neural default differentiation pathway, or by directed differentiation with retinoic acid (RA)-induced floating sphere assay. Lineage selection produced large populations of SOX2+ neural stem/progenitor cell populations and neuronal derivatives while directed differentiation produced few and improper neuronal derivatives. Primary canine neural lines were generated from fetal tissue and used as a positive control for differentiation and electrophysiology. Differentiation of EGF- and Noggin-directed cNSC lines in N2B27 with low-dose growth factors (BDNF/NT-3 or PDGFαα) produced phenotypes equivalent to primary canine neural cells including 3CB2+ radial progenitors, MOSP+ glia restricted precursors, VIM+/GFAP+ astrocytes, and TUBB3+/MAP2+/NFH+/SYN+ neurons. Conversely, induction with RA and neuronal differentiation produced inadequate putative neurons for further study, even though appropriate neuronal gene expression profiles were observed by RT-PCR (including Nestin, TUBB3, PSD95, STX1A, SYNPR, MAP2). Co-culture of cESC-derived neurons with primary canine fetal cells on canine astrocytes was used to test functional maturity of putative neurons. Canine ESC-derived neurons received functional GABAA- and AMPA-receptor mediated synaptic input, but only when co-cultured with primary neurons. This study presents established neural stem/progenitor cell populations and functional neural derivatives in the dog, providing the proof-of-concept required to translate stem cell transplantation strategies into a clinically relevant animal model

    Physiological normoxia and absence of EGF is required for the long-term propagation of anterior neural precursors from human pluripotent cells

    Get PDF
    Widespread use of human pluripotent stem cells (hPSCs) to study neuronal physiology and function is hindered by the ongoing need for specialist expertise in converting hPSCs to neural precursor cells (NPCs). Here, we describe a new methodology to generate cryo-preservable hPSC-derived NPCs that retain an anterior identity and are propagatable long-term prior to terminal differentiation, thus abrogating regular de novo neuralization. Key to achieving passagable NPCs without loss of identity is the combination of both absence of EGF and propagation in physiological levels (3%) of O2. NPCs generated in this way display a stable long-term anterior forebrain identity and importantly retain developmental competence to patterning signals. Moreover, compared to NPCs maintained at ambient O2 (21%), they exhibit enhanced uniformity and speed of functional maturation, yielding both deep and upper layer cortical excitatory neurons. These neurons display multiple attributes including the capability to form functional synapses and undergo activity-dependent gene regulation. The platform described achieves long-term maintenance of anterior neural precursors that can give rise to forebrain neurones in abundance, enabling standardised functional studies of neural stem cell maintenance, lineage choice and neuronal functional maturation for neurodevelopmental research and disease-modelling
    corecore