61 research outputs found

    Cyclotron Resonance Study of the Two-Dimensional Electron Layers and Double-Layers in Tilted Magnetic Fields

    Full text link
    The far-infrared absorption in two-dimensional electron layers subject to magnetic field of general orientation was studied theoretically. The Kubo formula is employed to derive diagonal components of the magneto-conductivity tensor of two-dimensional electron single-layers and double-layers. The parabolic quantum well is used to model a simple single-layer system. Both single-layer and double-layer systems can be realized in a pair of tunnel-coupled, strictly two-dimensional quantum wells. Obtained results are compared to experimental data.Comment: 4 pages, 6 figures, elsart/PHYEAUTH macros; presented on the EP2DS-15 Conference in Nara, Japan. To be published in Physica

    Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Full text link
    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file available upon request. Phys. Rev.B, in pres

    Inter-layer Hall effect in double quantum wells subject to in-plane magnetic fields

    Full text link
    We report on a theoretical study of the transport properties of two coupled two-dimensional electron systems subject to in-plane magnetic fields. The charge redistribution in double wells induced by the Lorenz force in crossed electric and magnetic fields has been studied. We have found that the redistribution of the charge and the related inter-layer Hall effect originate in the chirality of diamagnetic currents and give a substantial contribution to the conductivity.Comment: 7 RevTex pages, 4 figures, appendix added and misprint in Eq. (11) correcte

    Cyclotron effective mass of 2D electron layer at GaAs/AlGaAs heterojunction subject to in-plane magnetic fields

    Full text link
    We have found that Fermi contours of a two-dimensional electron gas at \rmGaAs/Al_xGa_{1-x}As interface deviate from a standard circular shape under the combined influence of an approximately triangular confining potential and the strong in-plane magnetic field. The distortion of a Fermi contour manifests itself through an increase of the electron effective cyclotron mass which has been measured by the cyclotron resonance in the far-infrared transmission spectra and by the thermal damping of Shubnikov-de Haas oscillations in tilted magnetic fields with an in-plane component up to 5 T. The observed increase of the cyclotron effective mass reaches almost 5 \% of its zero field value which is in good agreement with results of a self-consistent calculation.Comment: 4 pages, Revtex, figures can be obtained on request from [email protected]; to appear in Phys. Rev. B (in press). No changes, the corrupted submission replace

    Longitudinal conductivity and transverse charge redistribution in coupled quantum wells subject to in-plane magnetic fields

    Full text link
    In double quantum wells electrons experience a Lorentz force oriented perpendicular to the structure plane when an electric current is driven perpendicular to the direction of an in-plane magnetic field. Consequently, the excess charge is accumulated in one of the wells. The polarization of a bilayer electron system and the corresponding Hall voltage are shown to contribute substantially to the in-plane conductivity.Comment: 3 pages, 2 figure

    Magnetotransport with two occupied subbands in a Si(100) inversion layer

    Full text link
    We have studied an electron transport in inversion layers of high-mobility Si(100) samples. At high electron concentrations and temperatures below 4.2 K, two series of Shubnikov-de Haas oscillations have been observed. The temperature damping of the second series oscillations indicates that the second occupied subband belongs to the first energy level of the fourfold-degenerate ladder 00'. Samples with two occupied subbans exhibit a strong anomalous negative magnetoresitance, reaching 25%\rm \approx 25 \% of a zero field value at B=B = 12 T. The resistance decrease is more pronounced for lower temperatures and higher electron concentrations. We explain this behaviour by an increase of the second subband mobility due to the freezing-out of the scattering of 00' electrons. Based on the measured periods of SdH oscillations, we conclude that the electrons are distributed inhomogeneously beneath the sample gate.Comment: 4 pages. RevTex text and 4 PostScript figures in a single tar-compressed file produced by 'uufiles

    Electronic structure of unidirectional superlattices in crossed electric and magnetic fields and related terahertz oscillations

    Full text link
    We have studied Bloch electrons in a perfect unidirectional superlattice subject to crossed electric and magnetic fields, where the magnetic field is oriented ``in-plane'', i.e. in parallel to the sample plane. Two orientation of the electric field are considered. It is shown that the magnetic field suppresses the intersubband tunneling of the Zener type, but does not change the frequency of Bloch oscillations, if the electric field is oriented perpendicularly to both the sample plane and the magnetic field. The electric field applied in-plane (but perpendicularly to the magnetic field) yields the step-like electron energy spectrum, corresponding to the magnetic-field-tunable oscillations alternative to the Bloch ones.Comment: 7 pages, 1 figure, accepted for publication in Phys. Rev.

    Magnetoresistance and electronic structure of asymmetric GaAs/AlGaAs double quantum wells in the in-plane/tilted magnetic field

    Full text link
    Bilayer two-dimensional electron systems formed by a thin barrier in the GaAs buffer of a standard heterostructure were investigated by magnetotransport measurements. In magnetic fields oriented parallel to the electron layers, the magnetoresistance exhibits an oscillation associated with the depopulation of the higher occupied subband and the field-induced transition into a decoupled bilayer. Shubnikov-de Haas oscillations in slightly tilted magnetic fields allow to reconstruct the evolution of the electron concentration in the individual subbands as a function of the in-plane magnetic field. The characteristics of the system derived experimentally are in quantitative agreement with numerical self-consistent-field calculations of the electronic structure.Comment: 6 pages, 5 figure

    Excitonic photoluminescence in symmetric coupled double quantum wells subject to an external electric field

    Full text link
    The effect of an external electric field F on the excitonic photoluminescence (PL) spectra of a symmetric coupled double quantum well (DQW) is investigated both theoretically and experimentally. We show that the variational method in a two-particle electron-hole wave function approximation gives a good agreement with measurements of PL on a narrow DQW in a wide interval of F including flat-band regime. The experimental data are presented for an MBE-grown DQW consisting of two 5 nm wide GaAs wells, separated by a 4 monolayers (MLs) wide pure AlAs central barrier, and sandwiched between Ga_{0.7}Al_{0.3}As layers. The bias voltage is applied along the growth direction. Spatially direct and indirect excitonic transitions are identified, and the radius of the exciton and squeezing of the exciton in the growth direction are evaluated variationally. The excitonic binding energies, recombination energies, oscillator strengths, and relative intensities of the transitions as functions of the applied field are calculated. Our analysis demonstrates that this simple model is applicable in case of narrow DQWs not just for a qualitative description of the PL peak positions but also for the estimation of their individual shapes and intensities.Comment: 5 pages, 4 figures (accepted in Phys. Rev. B

    Electronic Structure of Three-Dimensional Superlattices Subject to Tilted Magnetic Fields

    Full text link
    Full quantum-mechanical description of electrons moving in 3D structures with unidirectional periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation. To understand magneto-oscillations in such systems it is in many cases sufficient to use the quasi-classical approach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-independent rigid body in k-space and periods of oscillations are related to extremal cross-sections of the Fermi surface cut by planes perpendicular to the magnetic-field direction. We point out cases where the quasi-classical treatment fails and propose a simple tight-binding fully-quantum-mechanical model of the superlattice electronic structure.Comment: 8 pages, 7 figures, RevTex, submitted to Phys. Rev.
    corecore