4 research outputs found

    The hookworm Ancylostoma ceylanicum: an emerging public health risk in Australian tropical rainforests and Indigenous communities

    Get PDF
    Ancylostoma ceylanicum is the common hookworm of domestic dogs and cats throughout Asia, and is an emerging but little understood public health risk in tropical northern Australia. We investigated the prevalence of A. ceylanicum in soil and free-ranging domestic dogs at six rainforest locations in Far North Queensland that are Indigenous Australian communities and popular tourist attractions within the Wet Tropics World Heritage Area. By combining PCR-based techniques with traditional methods of hookworm species identification, we found the prevalence of hookworm in Indigenous community dogs was high (96.3% and 91.9% from necropsy and faecal samples, respectively). The majority of these infections were A. caninum. We also observed, for the first time, the presence of A. ceylanicum infection in domestic dogs (21.7%) and soil (55.6%) in an Indigenous community. A. ceylanicum was present in soil samples from two out of the three popular tourist locations sampled. Our results contribute to the understanding of dogs as a public health risk to Indigenous communities and tourists in the Wet Tropics. Dog health needs to be more fully addressed as part of the Australian Government's commitments to "closing the gap" in chronic disease between Indigenous and other Australians, and encouraging tourism in similar locations

    Zoonotic Helminth Diseases in Dogs and Dingoes Utilising Shared Resources in an Australian Aboriginal Community

    Get PDF
    The impacts of free-roaming canids (domestic and wild) on public health have long been a concern in Australian Indigenous communities. We investigated the prevalence of zoonotic helminth diseases in dogs and sympatric dingoes, and used radio telemetry to measure their spatial overlap, in an Aboriginal community in the Wet Tropics of Australia. Samples collected from dingoes and dogs showed high levels of infection with the zoonotic hookworm, Ancylostoma caninum. Dingoes were also positive for A. ceylanicum infection (11.4%), but dogs were infection free. Whipworm, Trichuris vulpis, infection was far more prevalent in necropsies of domestic dogs (78.6%) than dingoes (3.7%). Dogs were free from Dirofilaria immitis infection, while dingoes recorded 46.2% infection. Eleven dingoes and seven free-roaming domestic dogs were fitted with Global Positioning System collars and tracked over an extended period. Dingo home-ranges almost completely overlapped those of the domestic dogs. However, dingoes and dogs did not utilise the same area at the same time, and dogs may have avoided dingoes. This spatial overlap in resource use presents an opportunity for the indirect spill-over and spill-back of parasites between dogs and dingoes. Tracking and camera traps showed that the community rubbish tip and animal carcasses were areas of concentrated activity for dogs and dingoes

    Dingoes (Canis dingo Meyer, 1793) continue to be an important reservoir host of Dirofilaria immitis in low density housing areas in Australia

    No full text
    Heartworm (Dirofilaria immitis) is a parasitic nematode responsible for canine and feline cardiopulmonary dirofilariasis and human zoonotic filariosis in both tropical and temperate regions throughout the world. Importantly, this study in the Wet Tropics of Far North Queensland found D. immitis remains at high prevalence (72.7%) in wild dingoes in low density housing areas in Australia. This prevalence is equivalent to the highest levels seen in wild dogs in Australia and represents an ongoing risk to domestic dogs, cats and humans. In contrast, in higher density residential areas prevalence was significantly lower (16.7%, p = 0.001). It is possible that chemotherapeutic heartworm (HW) prevention in domestic dogs in these higher density housing areas is helping to control infection in the resident dingo population. Five dingoes killed in council control operations around Atherton, a non-endemic HW region in the Wet Tropics, were all negative for HW likely due to the colder climate of the region restricting transmission of the disease. This survey highlights the importance of dingoes as reservoir hosts of HW disease and that the subsequent risk of infection to companion animals and humans depends on local factors such as housing density, possibly linked to chemotherapeutic HW control in domestic dogs and climate. Our findings show that veterinary clinicians need to ensure that pet owners are aware of HW disease and do not become complacent about HW chemoprohylaxis in areas which support dingo populations

    Cooling off health security hot spots: getting on top of it down under

    No full text
    Australia is free of many diseases, pests and weeds found elsewhere in the world due to its geographical isolation and relatively good health security practices. However, its health security is under increasing pressure due to a number of ecological, climatic, demographic and behavioural changes occurring globally. North Queensland is a high risk area (a health security hot spot) for Australia, due in part to its connection to neighbouring countries via the Torres Strait and the Indo-Papuan conduit, its high diversity of wildlife reservoirs and its environmental characteristics. Major outbreaks of exotic diseases, pests and weeds in Australia can cost in excess of $1 billion; however, most expenditure on health security is reactive apart from preventive measures undertaken for a few high profile diseases, pests and weeds. Large gains in health security could therefore be made by spending more on pre-emptive approaches to reduce the risk of outbreaks, invasion/spread and establishment, despite these gains being difficult to quantify. Although biosecurity threats may initially have regional impacts (e.g. Hendra virus), a break down in security in health security hot spots can have national and international consequences, as has been seen recently in other regions with the emergence of SARS and pandemic avian influenza. Novel approaches should be driven by building research and management capacity, particularly in the regions where threats arise, a model that is applicable both in Australia and in other regions of the world that value and therefore aim to improve their strategies for maintaining health security
    corecore