32 research outputs found

    N-Oleoyl-glycine reduces nicotine reward and withdrawal in mice.

    Get PDF
    Cigarette smokers with brain damage involving the insular cortex display cessation of tobacco smoking, suggesting that this region may contribute to nicotine addiction. In the present study, we speculated that molecules in the insular cortex that are sensitive to experimental traumatic brain injury (TBI) in mice might provide leads to ameliorate nicotine addiction. Using targeted lipidomics, we found that TBI elicited substantial increases of a largely uncharacterized lipid, N-acyl-glycine, N-oleoyl-glycine (OlGly), in the insular cortex of mice. We then evaluated whether intraperitoneal administration of OlGly would alter withdrawal responses in nicotine-dependent mice as well as the rewarding effects of nicotine, as assessed in the conditioned place preference paradigm (CPP). Systemic administration of OlGly reduced mecamylamine-precipitated withdrawal responses in nicotine-dependent mice and prevented nicotine CPP. However, OlGly did not affect morphine CPP, demonstrating a degree of selectivity. Our respective in vitro and in vivo observations that OlGly activated peroxisome proliferator-activated receptor alpha (PPAR-α) and the PPAR-α antagonist GW6471 prevented the OlGly-induced reduction of nicotine CPP in mice suggests that this lipid acts as a functional PPAR-α agonist to attenuate nicotine reward. These findings raise the possibility that the long chain fatty acid amide OlGly may possess efficacy in treating nicotine addiction

    Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift

    Get PDF
    Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)DuPont MIT Alliance (Graduate Research Fellowship)National Institutes of Health (U.S.) (Grant EB-001960)National Institutes of Health (U.S.) (Grant EB-002026)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    Omega-3 N-acylethanolamines are endogenously synthesised from omega-3 fatty acids in different human prostate and breast cancer cell lines

    No full text
    Omega-3 (n-3) fatty acids inhibit breast and prostate cancer cell growth. We previously showed that N-acylethanolamine derivatives of n-3 (n-3-NAE) are endocannabinoids, which regulate cancer cell proliferation. These n-3-NAE are synthesised in certain cells/tissues, after supplementing with fatty acids, however, no one has assessed whether and to what extent this occurs in cancer cells. We determined levels of endogenous n-3-NAEs in hormone sensitive and insensitive prostate and breast cancer cells and subsequent effects on other endocannabinoids (anandamide and 2-arachidonoylglycerol), before and after supplementing with DHA and EPA fatty acids, using HPLC tandem mass spectrometry. This is the first study reporting that n-3-NAEs are synthesised from their parent n-3 fatty acids in cancer cells, regardless of tumour type, hormone status or the presence of fatty acid amide hydrolase. This could have important implications for the use of n-3 fatty acids as therapeutic agents in breast and prostate cancers expressing cannabinoid receptors

    In Vitro and In Vivo Efficacy of Non-Psychoactive Cannabidiol in Neuroblastoma

    No full text
    Background: Neuroblastoma (NBL) is one of the most common solid cancers in children. Prognosis in advanced NBL is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Methods: We investigated, in vitro and in vivo, the anti-NBL effect of the most active compounds in Cannabis, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human NBL SK-N-SH cells. Results: Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, CBD was the more active. Treatment with CBD reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, CBD elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Conclusions: Our results demonstrate the antitumourigenic action of CBD on NBL cells. Because CBD is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of NBL

    CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency

    No full text
    The significance of the results reported is in two areas. (i) Because the cannabinoid receptor type 2 (CB2) agonists seem to be general protective agents, HU-433, a new specific CB2 agonist, may be of major therapeutic importance. (ii) Enantiomers usually have different activity profiles. We report now that HU-433 and its enantiomer HU-308 are both specific CB2 agonists, but whereas HU-433 is much more potent than HU-308 in the rescue of ovariectomy-induced bone loss and ear inflammation, its binding to the CB2 receptor (through which the activity of both enantiomers takes place) is substantially lower compared with HU-308. This situation questions the usefulness of universal radioligands for comparative binding studies
    corecore