70 research outputs found

    The mitochondrial DNA T16189C polymorphism and HIV-associated cardiomyopathy: a genotype-phenotype association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mitochondrial DNA (mtDNA) T16189C polymorphism, with a homopolymeric C-tract of 10–12 cytosines, is a putative genetic risk factor for idiopathic dilated cardiomyopathy in the African and British populations. We hypothesized that this variant may predispose to dilated cardiomyopathy in people who are infected with the human immunodeficiency virus (HIV).</p> <p>Methods</p> <p>A case-control study of 30 HIV-positive cases with dilated cardiomyopathy and 37 HIV-positive controls without dilated cardiomyopathy was conducted. The study was confined to persons of black African ancestry to minimize confounding of results by population admixture. HIV-positive patients with an echocardiographically confirmed diagnosis of dilated cardiomyopathy and HIV-positive controls with echocardiographically normal hearts were studied. Patients with secondary causes of cardiomyopathy (such as hypertension, diabetes, pregnancy, alcoholism, valvular heart disease, and opportunistic infection) were excluded from the study. DNA samples were sequenced for the mtDNA T16189C polymorphism with a homopolymeric C-tract in the forward and reverse directions on an ABI3100 sequencer.</p> <p>Results</p> <p>The cases and controls were well matched for age (median 35 years versus 34 years, P = 0.93), gender (males 60% vs 53%, P = 0.54), and stage of HIV disease (mean CD4 T cell count 260.7/μL vs. 176/μL, P = 0.21). The mtDNA T16189C variant with a homopolymeric C-tract was detected at a frequency of 26.7% (8/30) in the HIV-associated cardiomyopathy cases and 13.5% (5/37) in the HIV-positive controls. There was no significant difference between cases and controls (Odds Ratio 2.33, 95% Confidence Interval 0.67–8.06, p = 0.11).</p> <p>Conclusion</p> <p>The mtDNA T16189C variant with a homopolymeric C-tract is not associated with dilated cardiomyopathy in black African people infected with HIV.</p

    Axial distribution of myosin binding protein-C is unaffected by mutations in human cardiac and skeletal muscle

    Get PDF
    Myosin binding protein-C (MyBP-C), a major thick filament associated sarcomeric protein, plays an important functional and structural role in regulating sarcomere assembly and crossbridge formation. Missing or aberrant MyBP-C proteins (both cardiac and skeletal) have been shown to cause both cardiac and skeletal myopathies, thereby emphasising its importance for the normal functioning of the sarcomere. Mutations in cardiac MyBP-C are a major cause of hypertrophic cardiomyopathy (HCM), while mutations in skeletal MyBP-C have been implicated in a disease of skeletal muscle—distal arthrogryposis type 1 (DA-1). Here we report the first detailed electron microscopy studies on human cardiac and skeletal tissues carrying MyBP-C gene mutations, using samples obtained from HCM and DA-1 patients. We have used established image averaging methods to identify and study the axial distribution of MyBP-C on the thick filament by averaging profile plots of the A-band of the sarcomere from electron micrographs of human cardiac and skeletal myopathy specimens. Due to the difficulty of obtaining normal human tissue, we compared the distribution to the A-band structure in normal frog skeletal, rat cardiac muscle and in cardiac muscle of MyBP-C-deficient mice. Very similar overall profile averages were obtained from the C-zones in cardiac HCM samples and skeletal DA-1 samples with MyBP-C gene mutations, suggesting that mutations in MyBP-C do not alter its mean axial distribution along the thick filament

    The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Get PDF
    The original publication is available at http://www.jnrbm.com/content/10/1/12Includes bibliographyAbstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmiaPeer Reviewe

    Feline Hypertrophic Cardiomyopathy Associated with the p.A31P Mutation in cMyBP-C Is Caused by Production of Mutated cMyBP-C with Reduced Binding to Actin.

    No full text
    Please help populate SUNScholar with the full text of SU research output. Also - should you need this item urgently, please send us the details and we will try to get hold of the full text as quick possible. E-mail to [email protected]. Thank you.Geneeskunde en GesondheidswetenskappeMolekul�re Biologie & Mensgenetik

    Solution structure of RING finger-like domain of retinoblastoma-binding protein-6 (RBBP6) suggests it functions as a U-box

    No full text
    Retinoblastoma-binding protein-6 (RBBP6) plays a facilitating role, through its RING finger-like domain, in the ubiquitination of p53 by Hdm2 that is suggestive of E4-like activity. Although the presence of eight conserved cysteine residues makes it highly probable that theRINGfinger-like domain coordinates two zinc ions, analysis of the primary sequence suggests an alternative classification as a member of the U-box family, the members of which do not bind zinc ions. We show here that despite binding two zinc ions, the domain adopts a homodimeric structure highly similar to those of a number of U-boxes. Zinc ions could be replaced by cadmium ions without significantly disrupting the structure or the stability of the domain, although the rate of substitution was an order of magnitude slower than any previous measurement, suggesting that the structure is particularly stable, a conclusion supported by the high thermal stability of the domain. A hallmark of U-box-containing proteins is their association with chaperones, with which they cooperate in eliminating irretrievably unfolded proteins by tagging them for degradation by the proteasome. Using a yeast two-hybrid screen, we show that RBBP6 interacts with chaperones Hsp70 and Hsp40 through its N-terminal ubiquitin-like domain. Taken together with the structural similarities to U-box-containing proteins, our data suggest that RBBP6 plays a role in chaperone-mediated ubiquitination and possibly in protein quality control. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A
    corecore