106 research outputs found

    On the possibility to supercool molecular hydrogen down to superfluid transition

    Full text link
    Recent calculations by Vorobev and Malyshenko (JETP Letters, 71, 39, 2000) show that molecular hydrogen may stay liquid and superfluid in strong electric fields of the order of 4×107V/cm4\times 10^7 V/cm. I demonstrate that strong local electric fields of similar magnitude exist beneath a two-dimensional layer of electrons localized in the image potential above the surface of solid hydrogen. Even stronger local fields exist around charged particles (ions or electrons) if surface or bulk of a solid hydrogen crystal is statically charged. Measurements of the frequency shift of the 121 \to 2 photoresonance transition in the spectrum of two-dimensional layer of electrons above positively or negatively charged solid hydrogen surface performed in the temperature range 7 - 13.8 K support the prediction of electric field induced surface melting. The range of surface charge density necessary to stabilize the liquid phase of molecular hydrogen at the temperature of superfluid transition is estimated.Comment: 5 pages, 2 figure

    Theory of a magnetic microscope with nanometer resolution

    Full text link
    We propose a theory for a type of apertureless scanning near field microscopy that is intended to allow the measurement of magnetism on a nanometer length scale. A scanning probe, for example a scanning tunneling microscope (STM) tip, is used to scan a magnetic substrate while a laser is focused on it. The electric field between the tip and substrate is enhanced in such a way that the circular polarization due to the Kerr effect, which is normally of order 0.1% is increased by up to two orders of magnitude for the case of a Ag or W tip and an Fe sample. Apart from this there is a large background of circular polarization which is non-magnetic in origin. This circular polarization is produced by light scattered from the STM tip and substrate. A detailed retarded calculation for this light-in-light-out experiment is presented.Comment: 17 pages, 8 figure

    Discrete structure of ultrathin dielectric films and their surface optical properties

    Get PDF
    The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin dielectric film has been solved under explicit consideration of its discrete structure. The main attention has been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the laws of reflection and refraction at the distances from the surface less than two interatomic distances are principally different from the Fresnel laws. From the practical point of view the results of this work might be useful for the near-field optical microscopy of ultrahigh resolution.Comment: 25 pages, 16 figures, LaTeX2.09, to be published in Phys.Rev.

    Interaction of Nitrogen-Vacancy Centers in Diamond with a Dense Ensemble of Carbon-13

    Full text link
    The nitrogen-vacancy center in diamond attracts a lot of attention in sensing applications, mainly for temperature, magnetic field, and rotation measurements. Nuclear spins of carbon-13 surrounding the nitrogen-vacancy center can be used as a memory or sensing element. In the current work, a diamond plate with a relatively large concentration of carbon-13 was synthesized and examined. The spectrum of optically detected magnetic resonance was recorded and analyzed in a magnetic field range of 5-200 G. A strain-independent measurement technique of carbon-13 isotope concentration based on the analysis of magnetic resonance spectra was developed. Additionally, narrow features in the spectrum were detected and understood

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is \approx 104^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    Atomic-scale confinement of optical fields

    Full text link
    In the presence of matter there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically-defined gaps reaching below 0.5 nm. The existence of atomically-confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically-resolved spectroscopic imaging, deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the realization of novel quantum-optical devices

    Plasmon oscillations in ellipsoid nanoparticles: beyond dipole approximation

    Full text link
    The plasmon oscillations of a metallic triaxial ellipsoid nanoparticle have been studied within the framework of the quasistatic approximation. A general method has been proposed for finding the analytical expressions describing the potential and frequencies of the plasmon oscillations of an arbitrary multipolarity order. The analytical expressions have been derived for an electric potential and plasmon oscillation frequencies of the first 24 modes. Other higher orders plasmon modes are investigated numerically.Comment: 33 pages, 12 figure
    corecore