1,087 research outputs found

    Security Trade-offs in Ancilla-Free Quantum Bit Commitment in the Presence of Superselection Rules

    Full text link
    Security trade-offs have been established for one-way bit commitment in quant-ph/0106019. We study this trade-off in two superselection settings. We show that for an `abelian' superselection rule (exemplified by particle conservation) the standard trade-off between sealing and binding properties still holds. For the non-abelian case (exemplified by angular momentum conservation) the security trade-off can be more subtle, which we illustrate by showing that if the bit-commitment is forced to be ancilla-free an asymptotically secure quantum bit commitment is possible.Comment: 7 pages Latex; v2 has 8 pages and additional references and clarifications, this paper is to appear in the New Journal of Physic

    Simulating quantum operations with mixed environments

    Get PDF
    We study the physical resources required to implement general quantum operations, and provide new bounds on the minimum possible size which an environment must be in order to perform certain quantum operations. We prove that contrary to a previous conjecture, not all quantum operations on a single-qubit can be implemented with a single-qubit environment, even if that environment is initially prepared in a mixed state. We show that a mixed single-qutrit environment is sufficient to implement a special class of operations, the generalized depolarizing channels.Comment: 4 pages Revtex + 1 fig, pictures at http://stout.physics.ucla.edu/~smolin/tetrahedron .Several small correction

    On the capacities of bipartite Hamiltonians and unitary gates

    Get PDF
    We consider interactions as bidirectional channels. We investigate the capacities for interaction Hamiltonians and nonlocal unitary gates to generate entanglement and transmit classical information. We give analytic expressions for the entanglement generating capacity and entanglement-assisted one-way classical communication capacity of interactions, and show that these quantities are additive, so that the asymptotic capacities equal the corresponding 1-shot capacities. We give general bounds on other capacities, discuss some examples, and conclude with some open questions.Comment: V3: extensively rewritten. V4: a mistaken reference to a conjecture by Kraus and Cirac [quant-ph/0011050] removed and a mistake in the order of authors in Ref. [53] correcte

    Quantum Gravity and Inflation

    Get PDF
    Using the Ashtekar-Sen variables of loop quantum gravity, a new class of exact solutions to the equations of quantum cosmology is found for gravity coupled to a scalar field, that corresponds to inflating universes. The scalar field, which has an arbitrary potential, is treated as a time variable, reducing the hamiltonian constraint to a time-dependent Schroedinger equation. When reduced to the homogeneous and isotropic case, this is solved exactly by a set of solutions that extend the Kodama state, taking into account the time dependence of the vacuum energy. Each quantum state corresponds to a classical solution of the Hamiltonian-Jacobi equation. The study of the latter shows evidence for an attractor, suggesting a universality in the phenomena of inflation. Finally, wavepackets can be constructed by superposing solutions with different ratios of kinetic to potential scalar field energy, resolving, at least in this case, the issue of normalizability of the Kodama state.Comment: 18 Pages, 2 Figures; major corrections to equations but prior results still hold, updated reference

    Holographic Formulation of Quantum Supergravity

    Get PDF
    We show that N=1{\cal N}=1 supergravity with a cosmological constant can be expressed as constrained topological field theory based on the supergroup Osp(14)Osp(1|4). The theory is then extended to include timelike boundaries with finite spatial area. Consistent boundary conditions are found which induce a boundary theory based on a supersymmetric Chern-Simons theory. The boundary state space is constructed from states of the boundary supersymmetric Chern-Simons theory on the punctured two sphere and naturally satisfies the Bekenstein bound, where area is measured by the area operator of quantum supergravity.Comment: 30 pages, no figur

    Perfect quantum error correction coding in 24 laser pulses

    Get PDF
    An efficient coding circuit is given for the perfect quantum error correction of a single qubit against arbitrary 1-qubit errors within a 5 qubit code. The circuit presented employs a double `classical' code, i.e., one for bit flips and one for phase shifts. An implementation of this coding circuit on an ion-trap quantum computer is described that requires 26 laser pulses. A further circuit is presented requiring only 24 laser pulses, making it an efficient protection scheme against arbitrary 1-qubit errors. In addition, the performance of two error correction schemes, one based on the quantum Zeno effect and the other using standard methods, is compared. The quantum Zeno error correction scheme is found to fail completely for a model of noise based on phase-diffusion.Comment: Replacement paper: Lost two laser pulses gained one author; added appendix with circuits easily implementable on an ion-trap compute

    String-net condensation: A physical mechanism for topological phases

    Full text link
    We show that quantum systems of extended objects naturally give rise to a large class of exotic phases - namely topological phases. These phases occur when the extended objects, called ``string-nets'', become highly fluctuating and condense. We derive exactly soluble Hamiltonians for 2D local bosonic models whose ground states are string-net condensed states. Those ground states correspond to 2D parity invariant topological phases. These models reveal the mathematical framework underlying topological phases: tensor category theory. One of the Hamiltonians - a spin-1/2 system on the honeycomb lattice - is a simple theoretical realization of a fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions. Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions.Comment: 21 pages, RevTeX4, 19 figures. Homepage http://dao.mit.edu/~we

    Locking classical correlation in quantum states

    Full text link
    We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)(2n+1)-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2n/2 bits to nn bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.Comment: 7 pages, revtex

    Constraints on the quantum gravity scale from kappa - Minkowski spacetime

    Full text link
    We compare two versions of deformed dispersion relations (energy vs momenta and momenta vs energy) and the corresponding time delay up to the second order accuracy in the quantum gravity scale (deformation parameter). A general framework describing modified dispersion relations and time delay with respect to different noncommutative kappa -Minkowski spacetime realizations is firstly proposed here and it covers all the cases introduced in the literature. It is shown that some of the realizations provide certain bounds on quadratic corrections, i.e. on quantum gravity scale, but it is not excluded in our framework that quantum gravity scale is the Planck scale. We also show how the coefficients in the dispersion relations can be obtained through a multiparameter fit of the gamma ray burst (GRB) data.Comment: 9 pages, final published version, revised abstract, introduction and conclusion, to make it clear to general reade
    corecore