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Quantum gravity and inflation
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Using the Ashtekar-Sen variables of loop quantum gravity, a new class of exact solutions to the equations of
quantum cosmology is found for gravity coupled to a scalar field that corresponds to inflating universes. The
scalar field, which has an arbitrary potential, is treated as a time variable, reducing the Hamiltonian constraint
to a time-dependent Schro¨dinger equation. When reduced to the homogeneous and isotropic case, this is solved
exactly by a set of solutions that extend the Kodama state, taking into account the time dependence of the
vacuum energy. Each quantum state corresponds to a classical solution of the Hamiltonian-Jacobi equation.
The study of the latter shows evidence for an attractor, suggesting a universality in the phenomena of inflation.
Finally, wave packets can be constructed by superposing solutions with different ratios of kinetic to potential
scalar field energy, resolving, at least in this case, the issue of normalizability of the Kodama state.

DOI: 10.1103/PhysRevD.70.044025 PACS number~s!: 04.60.Ds

I. INTRODUCTION

The inflationary scenario provides a framework for re-
solving the problems of the standard big bang~SBB! and,
most importantly, provides a causal mechanism for generat-
ing structure in the universe. Currently, however, a com-
pletely satisfactory realization of inflation is still lacking.
A hint for finding a concrete realization of inflation comes
from the trans-Plankian problem. Despite their successes
in solving the formation of structure problem, most scalar
field driven inflation models generically predict that the near
scale invariant spectrum of quantum fluctuations which
seeded structure were generated in the trans-Planckian
epoch. This, however, is inconsistent with the assumptions
of a weakly coupled scalar field theory as well as the
assumption that quantum gravity effects can be ignored in
the model@2#. One can then view the trans-Plankian problem
as an indication, and hence an opportunity, that the concrete
derivation of inflation should be embedded in quantum
gravity.

There is also another interesting hint that suggests that
quantum gravity must play a role in our understanding of
inflation. Inflation addresses the issue of initial conditions in
the SBB, but solutions to scalar field theory driven inflation
suffer from geodesic incompleteness. This is an indication
that inflation itself requires the specification of fine-tuned
initial conditions@6#. The issue of the robustness of the ini-
tial conditions necessary to start a phenomenologically ac-
ceptable period of inflation, and their sensitivity to the pa-
rameters of the underlying field theory, remain open
questions which should in principle be addressed by quan-

tum gravity.1 Therefore, a major goal of quantum gravity and
cosmology is to find a quantum gravitational state which
yields a consistent description of inflation. If this is accom-
plished then one may be in a better position to make obser-
vational predictions for cosmic microwave background
~CMB! experiments.

The problem of inflation in quantum gravity has been
much studied@3–5#. However, in the past, the poor under-
standing of quantum gravity necessitated that the study of
inflation be restricted to the semiclassical approximation.
This restriction makes it difficult to obtain reliable results
about issues such as initial conditions and trans-Plankian ef-
fects that involve the regime in which quantum gravitational
effects will be significant.

In this light it is worth noting that in recent years a great
deal of progress has been made in a nonperturbative ap-
proach to quantum gravity, called loop quantum gravity@7#.
It is then appropriate to investigate whether these advances
allow us to treat the problem of inflation within cosmology
more precisely. The recent results of Bojowald and others@8#
indicate that in loop quantum gravity one can find exact
quantum states that allow us to investigate more precisely the
role of quantum gravitational effects on issues in cosmology,
including inflation and the fate of the initial singularity. Fur-
thermore, for constant cosmological constant, there is an ex-
act solution to the quantum constraints that define the full

1There are other motivations for expecting a quantum gravita-
tional derivation of inflation but this is outside the scope of this
paper. A good discussion of this issue is nicely covered in a review
by Robert Brandenberger@1#.
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quantum general relativity, discovered by Kodama@9#, which
has both an exact Planck scale description and a semiclassi-
cal interpretation in terms of de Sitter spacetime. While there
are open issues of interpretation concerning this state
@10,11,21#, it is also true that it can be used as the basis of
both nonperturbative and semiclassical calculations@12–14#.
Furthermore, exact results in the loop representation have
made possible an understanding of the temperature and en-
tropy of de Sitter spacetime@12,14# in terms of the kinemat-
ics of the quantum gravitational field.

Thus, there appears to be no longer any reason to restrict
the study of quantum cosmology to the semiclassical ap-
proximation. In this paper we provide more evidence for this,
by finding exact solutions to the equations of quantum cos-
mology that provide exact quantum mechanical descriptions
of inflation.

In order to study the problem of inflation in quantum
gravity we proceed by several steps: First, we couple general
relativity to a scalar fieldf with an arbitrarily chosen poten-
tial V(f). We then choose a gauge for the Hamiltonian con-
straints in which this scalar field is constant on constant time
hypersurfaces@16#. This is appropriate for the study of infla-
tion, because it has been shown that, in terms of the standard
cosmological time coordinates, inflation cannot occur unless
the fluctuations of the scalar field on constant time surfaces
are small@15#. There then always will exist a small, local
rescaling of time that makes the scalar field constant.2

In this gauge the infinite number of Hamiltonian con-
straints are reduced to a single, time-dependent Shro¨dinger
equation@16#. This is then solved, for homogeneous, isotro-
pic fields, as follows. The corresponding classical Hamilton
evolution equations are solved exactly by a class of
Hamilton-Jacobi functions. Each solution involves the nu-
merical integration of an ordinary first order differential
equation. These reduce, in the limit of vanishing slow role
parameterV̇/V to the Chern-Simons invariant of the Ash-
tekar connection. This is good, as the latter is known to be
the Hamilton-Jacobi function for de Sitter spacetime@9,12–
14#. By exponentiating the actions of these solutions, one
obtains a semiclassical state that reduces in the same limit to
the Kodama state. These new solutions are only good in the
semiclassical approximation. However, in this case it is pos-
sible to find the corrections which make the wave functionals
into exact solutions of the time-dependent Schro¨dinger equa-
tion.

The connection to the Kodama state allows us also to
investigate issues regarding the physical interpretation of that
state such as the normalizability of the wave function
@10,11#. In the case studied here, each exact quantum state
we find is delta-function normalizable in the physical Hilbert
space, corresponding to the reduced, homogeneous, isotropic
degrees of freedom. It is then interesting to ask whether fully
normalizable states can be constructed by superposing the
different solutions. In fact, at a given time, defined by the
value of f, the different solutions correspond to different

ratios ofp2/V(f), wherep is the canonical momenta of the
scalar field. It is then reasonable to superpose such solutions
as there is no reason to believe that quantum state of the
universe should at early times be an eigenstate of the ratio of
kinetic to potential energy. When we do this we find wave
packets which are exact normalizable solutions. This sug-
gests that the problem of normalizability of the Kodama state
in the exact theory may be resolved similarly by adding mat-
ter to the theory and then superposing extensions of the state
corresponding to different eigenvalues of the matter energy
momentum tensors.

In the next section we describe the scalar field general
relativity system in the formalism of Ashtekar@7# together
with the details of the procedure whereby the time gauge is
fixed. Section III explains the reduction to homogeneous,
isotropic fields in these variables, while Sec. IV describes the
solutions to the resulting classical equations by means of a
set of solutions to the Hamilton-Jacobi theory. The solutions
are studied numerically and evidence for an attractor is
found. In Sec. V we quantize the homogeneous, isotropic
system, discovering both semiclassical and exact solutions to
the Schro¨dinger equation. Our conclusions and some direc-
tions for further research are described in the final section.

II. THE THEORY

We consider general relativity coupled to a scalar fieldf
and additional fieldsC, in the Ashtekar formulation of loop
quantum gravity.3 Working in the canonical formalism, the
Hamiltonian constraint is of the form

H5Hgrav1
1

2
p21

1

2
EaiEi

b]af]bf1HC, ~1!

where p is the conjugate momentum tof and Eai is the
conjugate momentum to the complex SO~3! connectionAai .
The latter couple satisfy the Poisson bracket relation

$Aai~x!,Eb j~y!%5 iGdb
ad i

jd3~x,y!, ~2!

whereG is Newton’s constant.
In Eq. ~1! we useHC to denote the Hamiltonian con-

straint for all other matter fields. Unless otherwise noted, we
adopt the convention that lowercase latin indicesa, b, c,...
are spatial indices while lowercase latin indicesi, j, k,... are
internal SO~3! indices.

We include the scalar field potentialV(f) in the gravita-
tional term so that

Hgrav5
1

l p
2 e i jkEaiEb jS Fab

k 1
GV~f!

3
eabcE

ckD , ~3!

whereFab
k is the curvature of the connectionAai . Note that

any bare cosmological constantL is included inV(f) and

2Technical subtleties regarding this choice of gauge are discussed
below.

3For an introduction to the Ashtekar formalism in the context of
cosmology, see Ref.@14#. Other good, more general, and complete
reviews are in Ref.@7#.
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V(f)5L gives the Hamiltonian constraint for general rela-
tivity sourced only byL and no scalar field.

We also will impose the Gauss’s law constraint, which
enforces SO~3! gauge invariance

Gi5DaEai ~4!

and the diffeomorphism constraint, that imposes spatial dif-
feomorphism invariance

Da5EbiFabi1p]af1Da
C , ~5!

whereDa
C contains the matter fields.

We assume that spacetime has topologyM5S3R,
whereS is the spatial manifold. As we are interested in cos-
mology we assumeS has no boundary, so that the Hamil-
tonian is given by

H~N!5E
S
NH ~6!

which is defined for any lapseN. We note thatN has density
weight minus 1.

A. Fixing the time gauge

In the Hamiltonian approach to general relativity, one is
free to choose any slicing of space-time into a one parameter
family of spacelike surfaces, where that parameter can be
considered to be a time coordinate. All such slicings are
physically equivalent and the Hamiltonian constraint gener-
ates gauge transformations that take us from any one spatial
slice to any other. The choice of a slicing is then a gauge
choice.

In the usual treatments of inflation, the scalar fieldf is
required to be homogeneous to a good approximation. As the
deviations from homogeneity must be small for inflation to
occur at all, in solutions to Einstein’s equations in which
inflation takes place we can assume that the surfaces of con-
stantf are spacelike. The scalar field also varies as the uni-
verse expands, that is, it is ‘‘rolling down the hill.’’ It is then
possible to measure time during inflation by the value of the
f field, keeping in mind that the forward progression of time
corresponds tof changing in the negative direction.

As a result, we will choose to gauge fix the action of the
Hamiltonian constraint so thatf is constant on constant time
surfaces. We do this by imposing the gauge condition@16#

]af50. ~7!

We need to ensure that this condition is maintained by evo-
lution generated by the HamiltonianH(N). That is, we de-
mand

05
d]af

dt
5$]af,H~N!%5]a~Np! ~8!

which tells us that, to ensure the gauge condition is pre-
served, we must use a lapse

N5k/p, ~9!

wherek is a constant.
The gauge condition~7! is not good on the whole con-

figuration space as there are solutions to Einstein’s equations
for which none of the constantf surfaces are spacelike.
Thus, Eq.~7! is more than a gauge choice, it is also a restric-
tion on the space of solutions. Nevertheless, it is a restriction
which is appropriate to the study of inflation as there are
results that indicate that, in models where the metric is ap-
proximately spatially homogeneous, inflation only takes
place for solutions in whichf is also, to a good approxima-
tion, spatially homogeneous.

However, for most initial data that satisfies Eq.~7!, it is
known that the gauge condition will not be preserved for-
ever. The condition cannot be preserved ifp becomes zero at
any point onS.

Of course,p is chosen on the initial data surface, and then
evolves. Equation~9! tells us that an infinite lapse is required
to preserve the gauge condition at points wherep vanishes.
So by fixing the gauge to Eq.~7! we will generally be able to
study only a finite period in the evolution of the universe.
The extent of the period in which the gauge choice is good
depends on the initial values taken forp and the other fields.
As we are interested in modeling inflation in which devia-
tions from homogeneity must be assumed to be small, we
will assume that the gauge choice remains good for the entire
period of inflation. However, after we have built the quantum
theory, we will have to be concerned with the extent to which
these conditions are reliable.

As the Hamiltonian constraint does not commute with the
gauge condition, we have to solve all but one of the infinite
number of Hamiltonian constraints for the conjugate variable
p. The one that is not solved is the constraint whose lapse is
inversely proportional top, as that constraint commutes with
the gauge condition.

We then find that

p56@22Hgrav22HC#1/2. ~10!

There is one remaining Hamiltonian constraint which must
be imposed which is

05H~N5k/p!5
k

2 ES
p2

1

2
H. ~11!

To get the dimensions right,N should be dimensionless so
we pickk51/l p

2. ThenH is the Hamiltonian for evolution in
the gauge we have picked. It is given by

H56
&

l p
2 ES

@2Hgrav2HC#1/2. ~12!

Finally, we define

P5
1

l p
2 ES

p ~13!

which has dimensions of energy.
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Thus, if we call the timeT5 l p
2f, where the factor ofl p

2 is
included so thatT has dimensions of time, we have the Pois-
son bracket

$T,P%51. ~14!

We then have from Eq.~11!,

2P1H50, ~15!

taking note of the fact that the Hamiltonian is time dependent
because the potential term inHgrav depends onT. Herein, we
will use V(T) to denote the value of the original potential
V(f) evaluated atf5T/ l p

2. We thus have reduced general
relativity to an ordinary Hamiltonian system with a time-
dependent Hamiltonian.

III. THE HOMOGENEOUS CASE

In this paper we will be concerned with the spatially ho-
mogeneous case, in order to be able to compare our approach
to the standard results in inflationary cosmology. Thus, we
now turn to the reduction of the Hamiltonian system just
derived to the case of spatially homogeneous and isotropic
universes. We will also consider from now on only the case
in which the scalar field is the sole matter field.

The description of de Sitter spacetime in Ashtekar-Sen
variables is described in Ref.@14#. In a spatially flat slicing
of de Sitter spacetime, the SO~3! gauge can be chosen so that
the solution is given by diagonal and homogeneous fields

Aai5 idaiA, Eai5daiE, ~16!

whereA andE are constant on each spatial sliceS.
de Sitter spacetime with cosmological constantL is given

by

A5h f~ t !, E5 f 2, f ~ t !5eht, ~17!

where the Hubble parameter ish25GL/3 andt is the usual
time coordinate defined so that the spacetime metric is given
by

ds252dt21 f 2~ds3!2, ~18!

where (ds3)2 is the flat metric onS.
We will consider the generalization of de Sitter spacetime

in which the homogeneous scalar field is used as the time
coordinate, so thatA andE are separately functions ofT. In
these coordinates, the spacetime metric is

ds252N2dT21E~T!~ds3!2, ~19!

whereN is the lapse~9!.
The gauge and diffeomorphism constraints are solved au-

tomatically by the reduction to a homogeneous solution and
the curvature is given by

Fabi52A2eabi . ~20!

The gravitational part of the Hamiltonian constraint in this
reduced model is given by

Hgrav5
6

l p
2 E2S 2A21

l p
2V~T!

3
ED . ~21!

Given thatS is not compact and our fields homogeneous,
we must give a well defined meaning to the integral overS.
As space is homogeneous, we can integrate over a compact
regionS,S such that

E
S

5L3, ~22!

whereL is a fixed, nondynamical length scale. In this way,S
is a finite representative of the entire homogeneous space.
We will use the dimensionless ratioR5L/ l p . R is a free
parameter in the homogeneous cosmological model that is
not part of the full field theory, but arises from the reduction
from a field theory to a mechanical system.

If there are no matter fields, we then have the Hamiltonian

H~A,E,T!56R3A12E2S A22
l p
2V~T!

3
ED . ~23!

In this way we have a finite dimensional Hamiltonian theory
of cosmology with a spatially homogeneous scalar field.

IV. SOLUTION OF THE HAMILTONIAN SYSTEM

In order to find a solution forA(T) and E(T) we must
first determine their symplectic relationship. Integrating
Eb j(y) over S in Eq. ~2!4 and substituting our homogeneous
variables~16! gives the Poisson bracket

$A,R3l pE%53, ~24!

where we recognize (R3l p/3)E as the conjugate momentum
to A.

A. Derivation of the Hamilton-Jacobi function

We now proceed to solve our model using Hamilton-
Jacobi~HJ! theory. We search for a Hamilton-Jacobi function
S(A,T) such that5

E5
3

R3l p

]S

]A
, P5

]S

]T
, ~25!

where the normalization ofE is due to the relationship~24!.
Substituting these into Eq.~15! using the Hamiltonian~23!
gives the HJ equation~with the positive root!

]S

]T
5

6

l p

A3S ]S

]A
D 2S A22

l pV~T!

R3

]S

]A
D . ~26!

4Eb j has spatial density weight 1 and so can be integrated over the
spatial manifold.

5Other approaches to inflation which involve solutions to the
Hamilton-Jacobi equations, in the ‘‘old’’ canonical variables, are
described in Ref.@17#.
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A function Scs(A,T) will have zero energy if it satisfies

]Scs

]A
5

R3

l pV~T!
A2 ~27!

so thatH(A,]Scs /]A,T)50. This implies

Scs~A,T!5
R3

3l pV~T!
A3. ~28!

However, this does not solve the Einstein equations because

P5
]Scs

]T
52

V̇

V
ScsÞ0 ~29!

in general.
We pause in our derivation to note that Eq.~28! is related

to the Kodama solution of the full quantum theory@9#, be-
causeScs is proportional to the Chern-Simons invariant

E YCS~A!5E TrS A∧dA1
2

3
A∧A∧AD5 iR3l p

3A3,

~30!

where the last equality comes from using the homogeneous
variables~16!.

We can understand whyScs is not a solution to our model.
Were V(T) constant so thatL5V were the cosmological
constant, Eq.~28! would be the Hamilton-Jacobi function for
de Sitter spacetime~see Ref.@14#!. Were this the case, we
would have to havep50 so that the scalar field contributed
no kinetic energy, but only the constant potential energy. As
discussed above, this would violate our gauge condition~7!.

The deviation from de Sitter spacetime is then given by
terms proportional to the ratior 5p2/2V. This is propor-
tional to the ‘‘slow roll parameter’’

h5 l p

V̇

V
. ~31!

Whenr andh are small, the kinetic energy of the scalar field
is small compared to its potential energy.

To get a solution to our model, which requirespÞ0, we
need to modify de Sitter spacetime by terms proportional to
r andh. To do this, we modify the HJ function~28!, which
gives de Sitter spacetime, by adding a new dimensionless
function of timeu(T) so that

Su~A,T!5
R3A3

3l pV
@11u~T!#. ~32!

We expect to find thatu(T) scales withr andh. We plug this
into the Hamilton-Jacobi equation~26! and we find an equa-
tion for u(T)

u̇5
V̇

V
~11u!1

18i

l p

~11u!A3u. ~33!

We note that theA decouples, as each term in Eq.~26! is
proportional toA3. The result is that for every solution to Eq.
~33! we get a cosmological model.

Before looking at the consequences of our solution, we
first show that, for uÞ0, the spacetime deviates from
de Sitter spacetime. Recall that de Sitter spacetime is the
unique Lorentzian solution which satisfies the self-dual con-
dition

Jab
i 5Fab

i 1
l p
2L

3
eabcE

ci50, ~34!

where the proportionality can be taken to defineL. In the
homogeneous case we defineJ such thatJab

i 5Jeab
i so the

self-dual condition reads

J52A21
l p
2L

3
E50. ~35!

For solutions generated by Eq.~32!, taking V(T)[L, we
have

J5uA2 ~36!

which, for nontrivial spacetimes, only vanishes ifu(T)[0.

B. Analysis of the solutions

Given our HJ equation~32! we can calculate the lapse
function ~9! to be

N52 i
Vlp

6A3~11u!A3u
. ~37!

Introducing the integration constanta that one obtains from
integrating equation~33! and a further integration constantb
~both dimensionless! we can derive a relationship betweenA
andT by

]Su

]a
5b. ~38!

This leads to the equation of motion

A~T!5F3l pV~T!b

R3 S ]u

]a
D 21G1/3

. ~39!

In practice, the values ofa and b are determined by the
initial A(T0) andE(T0). Note that the partial derivative ofu
will, in general, add furtherT dependence toA(T). We can
then use Eq.~39! to derive theT dependence of the conjugate
momentum to be

E~T!5
35/3b2/3~11u!

R2l p
4/3V1/3 S ]u

]a
D 22/3

. ~40!

Given the form of the metric in these coordinates~19! we
see that theTT component of the metric is given by2N2. In
order for the metric to remain real and Lorentzian, we must
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have thatN2 be positive and real. Looking at Eq.~37! we see
that this requires thatu(T) be negative and real. Further-
more, for the metric to remain Lorentzian we require that
E.0. Equation~40! then requires thatu.21. Hence, our
gauge condition will break down unless

21,u~T!,0. ~41!

This then places a strong restriction on the value ofu.
In order to get a sense of the behavior ofu(T), we have

solved Eq.~33! numerically for the quartic potential

V~T!5l~T22m2!21Vmin ~42!

for several initial conditionsu(T0) consistent with the re-
strictions discussed above. Potentials of this sort are renor-
malizable and satisfies the slow roll condition.

Unless otherwise noted, we always takeT0.m so that
T5 l p

2f proceeding in the negative direction corresponds to
f ‘‘rolling down the hill.’’ These solutions can be seen in
Fig. 1 for l51, m52, and Vmin55. These plots show
the generic behavior ofu for a wide range of parameters in
Eq. ~42!.

The most noticeable characteristic is the apparent attractor
in Fig. 1. That is, all initial conditions satisfying our physical
condition ~41! merge to the same solution for someT,T0 .
The significance of this apparent robustness to initial condi-
tions suggests a universality in the phenomena of inflation,
which should be further investigated.

Furthermore, in Fig. 1 we see that, forT.m, all of our
solutions remain within the bounds21,u,0. However, for
T,m, u quickly becomes positive and takes on an imaginary
component and the metric becomes unphysical.T5m corre-
sponds to the scalar field having its minimum potential en-
ergy and is traditionally the end of the inflationary period.
Hence, it is not surprising that our gauge condition should
break down at this point, as discussed in Sec. II A. This
break-down of the gauge condition at the minimum of the
inflaton potential is a common feature for all of the different
parameters in Eq.~42! that were attempted. Of note is the
case whereVmin50 in which the evolution equation~33!
becomes singular forT5m.

While we defer a full numerical analysis of our model to
a later time, we briefly discuss the behavior ofu for ‘‘un-
physical’’ initial conditions that do not satisfy Eq.~41!. It is
clear from Eq.~33! that an initial conditionu(T0).0 forces
u to have an imaginary component and hence give an un-
physical metric. For all of the initial conditionsu(T0),21
that were attempted we found thatu rapidly diverged to2`.
Hence, the physical conditions imposed onu seem to be
reflected in its functional behavior governed by Eq.~33!.

V. QUANTUM MINISUPERSPACE

We now proceed to build a quantum theory from our clas-
sical Hamiltonian theory and find a full solution to the re-
sulting Schro¨dinger equation. First, we take quantum states
to be functionsC(A,T). We then defineÂ to be a multipli-
cative operator and define the operators

P̂C5 i\
]C

]T
, ÊC5

23i\

l pR3

]C

]A
. ~43!

Again, the normalization ofÊ stems from the relation~24!.
Herein, we will work in units such that\51.

The evolution equation becomes a time-dependent Schro¨-
dinger equation

i
]C

]T
5ĤC, ~44!

where we choose the ordering of the quantum Hamiltonian to
be

FIG. 1. Numerical solutions ofu(T) using the potential~42! for
l51, m52, andVmin55 and various initial conditionsT0 , u(T0)
satisfyingT0.2 and21,u(T0),0. The real part ofu is plotted
on the top graph while the imaginary part is on the bottom graph
and the different line types on the top and bottom correspond to the
same solution. The time variableT is in units of l p /c. Recall that
forward time corresponds toT evolving in thenegativedirection.
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Ĥ5
6A3i

l p

]

]A
~AAĴ! ~45!

~note that we have taken the negative root! where we define
Ĵ as

Ĵª11
iVl p

R3A2

]

]A
. ~46!

We then take a semiclassical quantum state

Cu~A,T!5e1 iSu~A,T!5e1 i ~A3R3/3Vlp!~11u! ~47!

and note that it is an eigenfunction ofĴ with a time-
dependent eigenvalue2u(T)

ĴCu52u~T!Cu ~48!

which implies

AĴCu5 iAu~T!Cu . ~49!

Hence, the action of the Hamiltonian on our semiclassical
state is

ĤCu52F6iA3R3~11u!A3u

Vlp
2 1

6A3u

l p
GCu . ~50!

We now show thatCu is, indeed, an approximate solution
to the Schro¨dinger equation~44! by computing the time de-
rivative

]Cu

]T
52

6A3R3~11u!A3u

Vlp
2 Cu , ~51!

where we have used the fact thatu(T) is a solution of Eq.
~33!. Comparing Eqs.~50! and ~51! we see that, provided

UA3R3~11u!

Vlp
U @1, ~52!

our semiclassical state~47! is indeed an approximate solu-
tion to the Schro¨dinger equation.

To find a full solution to Eq.~44!, we take the ansatz

C~A,T!5Cu~A,T!x~T!, ~53!

wherex is an arbitrary function ofT alone. Substitution of
Eq. ~53! into the Schro¨dinger equation yields the equation

]x

]T
5

6iA3u

l p

x ~54!

which can be immediately integrated to give

x~T!5e~6A3i / l p!*T0

T Au~ t !dt. ~55!

This yields

C~A,T!5e~6A3/l p!*T0

T A2u~ t !dt1 i ~A3R3/3Vlp!~11u! ~56!

which is a full solution to the Schro¨dinger equation~44!. We

have factored thei into the square root term so thatA2u) is
real for solutions ofu that satisfy the physical condition~41!.
To summarize, given a solution of Eq.~33! we have found a
complete solution~56! to the quantum theory of a homoge-
neous cosmology coupled to a scalar field in a potential.

A. Wave packets and normalizable states

Finally, we describe the physical inner product and show
how to construct exact, normalizable, quantum states of the
universe. In quantum gravity, the physical inner product is
determined by the reality conditions for physical observ-
ables. In the present case, in which all gauge degrees of
freedom are fixed by either gauge conditions or the reduction
to homogeneous, isotropic solutions,A(T) and E(T) are
physical degrees of freedom, and they are indeed real. In the
representation we are using in which states are functionals of
A and T and the latter is the time coordinate, the physical
inner product is hence,

^C~T!uC~T!&5E dAuC~A,T!u2. ~57!

Our exact solutions~56! are phases, so long asu(T) is
real and negative, corresponding to real solutions to the clas-
sical Einstein equations. Hence, with this restriction the so-
lutions are all delta function normalizable.

Following the usual procedure in quantum theory, we can
construct normalizable solutions by constructing wave pack-
ets. We may note that at a givenT, different classical solu-
tions, with different values ofu(T) correspond to cases in
which the scalar fieldf'T is moving at different rates.
Thus, while V(T) is fixed at the sameT, p(T) can vary,
leading to different ratios ofp(T)2/V(T). However, quan-
tum mechanically we would expect that this ratio would not
be a sharp observable. Thus the quantum state of the expand-
ing universe should not physically be built from a single
solution to the classical equationsu(T). As there is no rea-
son to expect that the initial conditions foru(T) are fixed
classically in the very early universe, we should expect the
inflating universe to be described by a wave packet corre-
sponding to superposing over solutions that differ in the
value ofu(T) at fixedT.

To do this, let us fixT5T0 , and consider initial values for
u(T0). To construct a wave packet we consider a central
valueu0 and definev5u(T0)2u0 . We then label

C~A,T0!v5e1 i @A3R3/3V~T0!l p#~11u01v !. ~58!
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Given a normalizable functionf (v) we may then define
an exact solution determined by the initial conditions

C~A,T0! f5E dv f ~v !C~A,T0!v . ~59!

By a suitable choice off (v), with support in the physical
intervalu5u01vP(21,0), the initial state is normalizable.

Let us then defineE(T,v)5*T0

T A2u(t)dt with initial

condition u(T0)5u01v and uv(T) to be the value ofu at
time T with the same initial condition. Then the wave packet
at later time is given by

C~A,T! f5E dv f ~v !e~6A3/l p!E~T,v !1 i ~A3R3/3Vlp!@11uv~T!#.

~60!

VI. CONCLUSIONS AND DISCUSSION

The results of this paper represent a step towards a de-
tailed study of the very early universe beyond the semiclas-
sical approximation, in which quantum gravitational effects
are treated in a nonperturbative and background-independent
manner. For each potentialV(f) and classical slow roll so-
lution u(T) consistent with inflation, we have found a quan-
tum state given by Eq.~56! which is an exact solution to the
quantum equations of motion, but has a classical limit given
by that classical solution. Furthermore, we can construct nor-
malizable states which are wave packets around the initial
conditions that generate that classical solution. Thus, infla-
tion is here described in terms of exact quantum states.

As a by-product, the simplicity of the Hamilton-Jacobi
solutions to the coupled Einstein-scalar field problem, using
the Ashtekar formulation, may provide a new, simplified ap-
proach to studying inflation classically. In our first investiga-
tion of the problem we found an attractor, suggesting, at least
in this case, a possible universality in the dynamics of the
very early universe. This deserves more investigation, as it
may provide an understanding of the hypothesis of chaotic
inflation @5#.

A number of very interesting questions remain, which
these results suggest can now be approached.

It would be very interesting to understand the relationship
of these results to those of Bojowald and others, in the con-
text of loop quantum cosmology@8#. In that case a similar
reduction is used, and solutions to quantum cosmology are
found which are exact and nonperturbative. However, Bo-
jowald’s results obtained using a representation conjugate to
that used here, which is roughly a dimensionally reduced
spin network basis. A number of interesting results are ob-
tained, including indications that the initial singularity is re-
moved. It would then be very useful to establish a homoge-
neous version of the loop transform, to express the states
studied here in Bojowald’s representation.

The ordering of the Hamiltonian used here is not Hermit-
ian. It is easy in the dimensional reduction to find Hermitian
orderings for the Hamiltonian. The exact quantum states
found here will solve the Hermitian ordering of the Schro¨-
dinger equation at the semiclassical approximation. It is chal-

lenging, but not impossible, to find exact results for the case
of Hermitian ordering. If not, at least a semiclassical expan-
sion could be constructed that would be reliable above the
Planck scale, whose leading order terms would be given by
the states found here.

It will be also interesting to incorporate the inhomoge-
neous modes of the gravitational and matter fields by means
of a perturbative expansion around the states constructed
here. The aim here will be first principles predictions for
transplankian effects in the spectra of scalar and tensor per-
turbations, as well as polarizations, detectible in cosmologi-
cal observations.

Slow-roll inflation requires a sufficiently large initial
value of the scalar field in order to obtain the sufficient num-
ber of e foldings to match with observations. One mecha-
nism for attaining such initial conditions is that of eternal
inflation @18# which proposes that quantum fluctuations al-
low the scalar field to diffuse up the potential well in certain
regions of space. Once inhomogeneous modes have been in-
corporated into our model~as discussed in the previous
point! it will be interesting to see if such a mechanism exists
in a quantum gravity context.

Recent results@19# have shown that loop quantum gravity
may provide a mechanism for driving the scalar field to high
values at early times. This was done in the context of Bo-
jowald’s cosmological formalism@8# so it will be interesting
to see if such a phenomenon can occur in our model as well.

We note that the validity of our gauge condition ends
roughly when inflation ends, as surfaces of constantf no
longer track surfaces of constant scale factor, once the uni-
verse enters the stage where, in terms of the latter, the scalar
field oscillates around the minimum ofV(f). We see that at
this point in the classical dynamics,u(T) becomes complex,
leading to complex values of the spacetime metric. To study
the problem of exiting from inflation it will then be neces-
sary to choose another time parameter, which is good
throughout the exit from inflation, and use the wave function
generated here as initial conditions for evolution in that pa-
rameter.

There exist extensions of the Kodama state to supergrav-
ity with N51,2 @20#. It is then likely that the results of the
present paper can be extended to supersymmetric models of
inflation.

It will be interesting to investigate whether the mecha-
nism used here to construct normalizable states will work in
the full theory, perhaps resolving the issue of the normaliz-
ability of the Kodama state.

ACKNOWLEDGMENTS

We are grateful to Robert Brandenberger, Laurent Freidel,
John Moffat, Michael Peskin, and Hendryk Pfeiffer for con-
versations during the course of this work. L.S. would like to
thank SLAC and the Physics Department of Stanford Uni-
versity, and S.A. would like to thank the Perimeter Institute
for hospitality during the course of this work. The work of
S.A. was supported by the Department of Energy, Contract
No. DE-AC03-76SF00515.

ALEXANDER, MALECKI, AND SMOLIN PHYSICAL REVIEW D 70, 044025 ~2004!

044025-8



@1# R. Brandenberger, ‘‘Inflation and the Theory of Cosmological
Perturbations,’’ astro-ph/971106.

@2# J. Martin and R. H. Brandenberger, Phys. Rev. D63, 123501
~2001!.

@3# J. B. Hartle and S. W. Hawking, Phys. Rev. D28, 2960~1993!.
@4# ‘‘A Bibliography of Papers on Quantum Cosmology,’’ ITP-

UCSB preprint No. NSF-ITP-88-132.
@5# A. D. Linde, JETP60, 211 ~1984!; A. Vilenkin, Phys. Rev. D

30, 509 ~1984!.
@6# T. Vachaspati and M. Trodden, Phys. Rev. D61, 023502

~2000!.
@7# For current introductions and reviews see, C. Rovelli,Quan-

tum Gravity ~Cambridge University Press, Cambridge, in
press!, draft in http://www.cpt.univ-mrs.fr/rovelli; T.
Thiemann, Lect. Notes Phys.631, 41 ~2003!; ‘‘Introduction to
Modern Canonical Quantum General Relativity,’’
gr-qc/0110034; L. Smolin, ‘‘How far are we from the quantum
theory of gravity,’’ hep-th/0303185; A. Perez, Class. Quantum
Grav. 20, R43 ~2003!; D. Oriti, Rep. Prog. Phys.64, 1489
~2001!.

@8# M. Bojowald and Hugo A. Morales-Tecotl, ‘‘Cosmological ap-
plications of loop quantum gravity,’’ gr-qc/0306008, and refer-
ences therein.

@9# H. Kodama, Prog. Theor. Phys.80, 1024~1988!; Phys. Rev. D
42, 2548~1990!.

@10# E. Witten, ‘‘A Note on the Chern-Simons and Kodama Wave-
functions,’’ gr-qc/0306083.

@11# L. Freidel and L. Smolin, hep-th/0310224.
@12# L. Smolin and C. Soo, Nucl. Phys.B449, 289 ~1995!.
@13# Chopin Soo and Lay Nam Chang, Int. J. Mod. Phys. D3, 529

~1994!; Chopin Soo, Class. Quantum Grav.19, 105 ~2002!.
@14# L. Smolin, ‘‘Quantum Gravity With a Positive Cosmological

Constant,’’ hep-th/0209079.
@15# G. F. Mazenko, R. M. Wald, and W. G. Unruh, Phys. Rev. D

31, 273 ~1985!.
@16# L. Smolin, ‘‘Time, measurement and information loss in quan-

tum cosmology,’’ gr-qc/9301016; Carlo Rovelli and L. Smolin,
Phys. Rev. Lett.72, 446 ~1994!.

@17# William H. Kinney, Phys. Rev. D56, 2002 ~1997!; D. S.
Salopek, ‘‘Cosmological Inflation and the Nature of Time,’’
astro-ph/9512031; ‘‘The Role of Time in Physical Cosmology,’’
astro-ph/9510059.

@18# A. D. Linde, D. Linde, and A. Mezhlumian, Phys. Rev. D49,
1783 ~1994!.

@19# S. Tsujikawa, P. Singh, and R. Maartens, ‘‘Loop quantum grav-
ity effects on inflation and the CMB,’’ astro-ph/0311015.

@20# Takashi Sano and J. Shiraishi, Nucl. Phys.B410, 423 ~1993!;
‘‘ The Ashtekar Formalism and WKB Wave Functions of N
51,2 Supergravities,’’ hep-th/9211103.

@21# G. A. M. Marugan, ‘‘Is the Exponential of the Chern-Simons
Action a Normalizable Physical State?’’ Class. Quant. Grav.
12, 435 ~1995!.

QUANTUM GRAVITY AND INFLATION PHYSICAL REVIEW D 70, 044025 ~2004!

044025-9


	Quantum gravity and inflation
	Repository Citation

	tmp.1374511836.pdf.X4sj9

