19 research outputs found

    The census of non-radial pulsation in first-overtone RR Lyrae stars of the OGLE Galactic bulge collection

    Get PDF
    We analyzed photometry for the up-to-date collection of the first-overtone RR Lyrae stars (RRc; 11415 stars) and double-mode RR Lyrae stars (RRd; 148 stars) towards the Galactic bulge from the Optical Gravitational Lensing Experiment. We analyzed frequency spectra of these stars in search for additional, low-amplitude signals, beyond the radial modes. We focused on stars from two groups: RR0.61RR_{0.61} and RR0.68RR_{0.68}. In the first group, additional low-amplitude signals have periods shorter than the first-overtone period; period ratios fall in the 0.60-0.64 range. In the second group, additional low-amplitude signals have periods longer than the first-overtone period; period ratios tightly cluster around 0.68. Altogether we have detected 960 and 147 RR Lyrae stars that belong to RR0.61RR_{0.61} and RR0.68RR_{0.68} groups, respectively, which yield the incidence rates of 8.3 and 1.3 per cent of the considered sample. We discuss statistical properties of RR Lyrae stars with additional periodicities. For RR0.61RR_{0.61} group we provide strong arguments that additional periodicities are connected to non-radial pulsation modes of degrees â„“=8\ell=8 and â„“=9\ell=9, as proposed by Dziembowski. We have also detected two double-periodic variables, with two close periodicities, similar to RR Lyrae variable V37 in NGC 6362. Properties of these peculiar variables, which may form a new group of double-mode pulsators, are discussed.Comment: 33 pages, 14 figures, 5 table

    Modelling turbulent fluxes due to thermal convection in rectilinear shearing flow

    Full text link
    We revisit a phenomenological description of turbulent thermal convection along the lines proposed originally by Gough (1965) in which eddies grow solely by extracting energy from the unstably stratified mean state and are subsequently destroyed by internal shear instability. This work is part of an ongoing investigation for finding a procedure to calculate the turbulent fluxes of heat and momentum in the presence of a shearing background flow in stars.Comment: 2 pages, 1 figure, accepted for publication in IAU Symposium 271 "Astrophysical Dynamics: From Galaxies to Stars", Nice, 201

    Blazhko Effect in the first overtone RR Lyrae stars of the OGLE Galactic bulge collection

    Get PDF
    We present the analysis of the Blazhko effect - quasi-periodic modulation of pulsation amplitude and/or phase - in the Galactic bulge first overtone RR Lyrae stars (RRc). We used the data gathered during the fourth phase of the Optical Gravitational Lensing Experiment (OGLE). Out of 10 826 analyzed RRc stars, Blazhko effect was detected in 607 stars which constitute 5.6 percent of the sample. It is the largest and most homogeneous sample of modulated RRc stars analyzed so far. Modulation periods cover a wide range, from slightly above 2 d to nearly 3000 d. Multiperiodic modulation was detected in 47 stars. The appearance of modulation in the frequency domain was studied in detail. Modulation manifests either as close doublets or as equidistant triplets and multiplets centered on radial mode frequency and its harmonics. In a significant fraction (29 percent) of stars, we have detected the modulation frequency itself, which corresponds to the modulation of the mean stellar brightness. Our search for period doubling effect, that was discovered recently in modulated fundamental mode RR Lyrae stars, and triggered development of new model behind the Blazhko modulation, yielded negative result. In 104 stars we detected additional signals that could correspond to both radial and non-radial modes. Statistical properties of modulated stars were analyzed in detail and confronted with properties of non-modulated stars and of modulated fundamental mode RR Lyrae stars. Our analysis provides constraints for the models to explain the Blazhko phenomenon, which still remains a puzzle more than hundred years after its discovery.Comment: 35 pages, 22 figures, 4 table
    corecore