21 research outputs found

    Endothelial glycocalyx integrity is preserved in young, healthy men during a single bout of strenuous physical exercise

    Get PDF
    In the present study we aimed to evaluate whether oxidative stress and inflammation induced by strenuous exercise affect glycocalyx integrity and endothelial function. Twenty one young, untrained healthy men performed a maximal incremental cycling exercise - until exhaustion. Markers of glycocalyx shedding (syndecan-1, heparan sulfate and hyaluronic acid), endothelial status (nitric oxide and prostacyclin metabolites - nitrate, nitrite, 6-keto-prostaglandin F1a), oxidative stress (8-oxo-2'- deoxyguanosine) and antioxidant capacity (uric acid, nonenzymatic antioxidant capacity) as well as markers of inflammation (sVCAM-1 and sICAM-1) were analyzed in venous blood samples taken at rest and at the end of exercise. The applied strenuous exercise caused a 5-fold increase in plasma lactate and hypoxanthine concentrations (p<0.001), a fall in plasma uric acid concentration and non-enzymatic antioxidant capacity (p<10-4), accompanied by an increase (p=0.003) in sVCAM-1 concentration. Plasma 6-keto-prostaglandin F1a concentration increased (p=0.006) at exhaustion, while nitrate and nitrite concentrations were not affected. Surprisingly, no significant changes in serum syndecan-1 and heparan sulfate concentrations were observed. We have concluded, that a single bout of severe-intensity exercise is well accommodated by endothelium in young, healthy men as it neither results in evident glycocalyx disruption nor in the impairment of nitric oxide and prostacyclin production

    Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect

    No full text
    Excitons, Coulomb-bound electron-hole pairs, are elementary photo-excitations in semiconductors that can couple to light through radiative relaxation. In contrast, dark excitons (X-D) show anti-parallel spin configuration with generally forbidden radiative emission. Because of their long lifetimes, these dark excitons are appealing candidates for quantum computing and optoelectronics. However, optical read-out and control of XD states has remained challenging due to their decoupling from light. Here, we present a tip-enhanced nano-optical approach to induce, switch and programmably modulate the XD emission at room temperature. Using a monolayer transition metal dichalcogenide (TMD) WSe2 on a gold substrate, we demonstrate similar to 6 x 10(5)-fold enhancement in dark exciton photoluminescence quantum yield achieved through coupling of the antenna-tip to the dark exciton out-of-plane optical dipole moment, with a large Purcell factor of >= 2 x 10(3) of the tip-sample nano-cavity. Our approach provides a facile way to harness excitonic properties in low-dimensional semiconductors offering new strategies for quantum optoelectronics

    Oxorhenium Complexes Bearing the Water-Soluble Tris(pyrazol-1-yl)methanesulfonate, 1,3,5-Triaza-7-phosphaadamantane, or Related Ligands, as Catalysts for Baeyer–Villiger Oxidation of Ketones

    No full text

    High-energy phosphates and their catabolites

    No full text
    corecore