1,697 research outputs found

    Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues

    Get PDF
    Wall-bounded turbulent flows at high Reynolds numbers have become an increasingly active area of research in recent years. Many challenges remain in theory, scaling, physical understanding, experimental techniques, and numerical simulations. In this paper we distill the salient advances of recent origin, particularly those that challenge textbook orthodoxy. Some of the outstanding questions, such as the extent of the logarithmic overlap layer, the universality or otherwise of the principal model parameters such as the von Kármán “constant,” the parametrization of roughness effects, and the scaling of mean flow and Reynolds stresses, are highlighted. Research avenues that may provide answers to these questions, notably the improvement of measuring techniques and the construction of new facilities, are identified. We also highlight aspects where differences of opinion persist, with the expectation that this discussion might mark the beginning of their resolution

    The Primordial Abundance of He4: An Update

    Get PDF
    We include new data in an updated analysis of helium in low metallicity extragalactic HII regions with the goal of deriving the primordial abundance of He4 (Y_P). We show that the new observations of Izotov et al (ITL) are consistent with previous data. However they should not be taken in isolation to determine (Y_P) due to the lack of sufficiently low metallicity points. We use the extant data in a semi-empirical approach to bounding the size of possible systematic uncertainties in the determination of (Y_P). Our best estimate for the primordial abundance of He4 assuming a linear relation between He4 and O/H is Y_P = 0.230 \pm 0.003 (stat) based on the subset of HII regions with the lowest metallicity; for our full data set we find Y_P = 0.234 \pm 0.002 (stat). Both values are entirely consistent with our previous results. We discuss the implications of these values for standard big bang nucleosynthesis (SBBN), particularly in the context of recent measurements of deuterium in high redshift, low metallicity QSO absorption-line systems.Comment: 26 pages, latex, 6 ps figure

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    The He abundance in the metal-deficient blue compact dwarf galaxies Tol 1214-277 and Tol 65

    Full text link
    We present high-quality Keck telescope spectroscopic observations of the two metal-deficient blue compact dwarf (BCD) galaxies Tol 1214-277 and Tol 65. These data are used to derive the heavy-element and helium abundances. We find that the oxygen abundances in Tol 1214-277 and Tol 65 are the same, 12+logO/H=7.54+/-0.01, or Zsun/24, despite the different ionization conditions in these galaxies. The nitrogen-to-oxygen abundance ratio in both galaxies is logN/O=-1.64+/-0.02 and lies in the narrow range found for the other most metal-deficient BCDs. We use the five strongest HeI emission lines 3889, 4471, 5876, 6678 and 7065, to correct self-consistently their intensities for collisional and fluorescent enhancement mechanisms and to derive the He abundance. Underlying stellar absorption is found to be important for the HeI 4471 emission line in both galaxies, being larger in Tol 65. The weighted He mass fractions in Tol 1214-277 and Tol 65 are respectively Y=0.2458+/-0.0039 and 0.2410+/-0.0050 when the three HeI emission lines, 4471, 5876 and 6678, are used, and are, respectively, 0.2466+/-0.0043 and 0.2463+/-0.0057 when the HeI 4471 emission line is excluded. These values are in very good agreement with recent measurements of the He mass fraction in others of the most metal-deficient BCDs by Izotov and coworkers. We find that the combined effect of the systematic uncertainties due to the underlying HeI stellar absorption lines, ionization and temperature structure of the HII region and collisional excitation of the hydrogen emission lines is likely small, not exceeding ~2% (the error is 2sigma). Our results support the validity of the standard big bang model of nucleosynthesis.Comment: 22 pages, 3 Postscript figures, accepted for publication in the Astrophysical Journa

    Beyond Speculative Robot Ethics

    Get PDF
    In this article we develop a dialogue model for robot technology experts and designated users to discuss visions on the future of robotics in long-term care. Our vision assessment study aims for more distinguished and more informed visions on future robots. Surprisingly, our experiment also lead to some promising co-designed robot concepts in which jointly articulated moral guidelines are embedded. With our model we think to have designed an interesting response on a recent call for a less speculative ethics of technology by encouraging discussions about the quality of positive and negative visions on the future of robotics.

    Helium abundance in the most metal-deficient blue compact galaxies: I Zw 18 and SBS 0335-052

    Get PDF
    We present high-quality spectroscopic observations of the two most-metal deficient blue compact galaxies known, I Zw 18 and SBS 0335-052 to determine the helium abundance. The underlying stellar absorption strongly influences the observed intensities of He I emission lines in the brightest NW component of I Zw 18, and hence this component should not be used for primordial He abundance determination. The effect of underlying stellar absorption, though present, is much smaller in the SE component. Assuming all systematic uncertainties are negligible, the He mass fraction derived in this component is Y = 0.243+/-0.007. The high signal-to-noise ratio spectrum (> 100 in the continuum) of SBS 0335-052 allows us to measure the helium mass fraction with a precision better than 2% -- 5% in nine different regions along the slit. Assuming all systematic uncertainties are negligible, the weighted mean He mass fraction in SBS 0335-052 is Y = 0.2437+/-0.0014 when the three He I 4471, 5876 and 6678 emission lines are used, and is 0.2463+/-0.0015 when the He I 4471 emission line is excluded. The weighted mean helium mass fraction in the two most metal-deficient BCGs I Zw 18 and SBS 0335-052, Y=0.2462+/-0.0015, after correction for the stellar He production results in a primordial He mass fraction Yp = 0.2452+/-0.0015. The derived Yp leads to a baryon-to-photon ratio of (4.7+/-1.0) 10^{-10}, consistent with the values derived from the primordial D and 7Li abundances, and supporting the standard big bang nucleosynthesis theory. For the most consistent set of primordial D, 4He, and 7Li abundances we derive an equivalent number of light neutrino species 3.0+/-0.3 (95% C.L.).Comment: 28 pages, 10 figures. To appear in Ap

    Molecular Hydrogen Excitation in Ultraluminous Infrared Galaxies

    Full text link
    We report medium resolution VLT ISAAC K-band spectroscopy of the nuclei of seven ultraluminous infrared galaxies. After accounting for stellar absorption features, we have detected several molecular hydrogen (H_2) v=1-0, 2-1, and 3-2 vibrational emission lines, as well as the HI Br\gamma and HeI 2^1P-2^1S recombination lines. The relative H_2 line intensities show little variation between the objects, suggesting that the H_2 excitation mechanisms in the nuclei are similar in all the objects. The 1-0 emissions appear thermalised at temperatures T\sim1000K. However, the 2-1 and 3-2 emissions show evidence of being radiatively excited by far-ultraviolet (FUV) photons, suggesting that the H_2 excitation in the ULIRGs may arise in dense photon dominated regions (PDRs). We show that the line ratios in the nuclei are consistent with PDRs with cloud densities between 10^4 to 10^5cm^{-3}, exposed to far ultraviolet (FUV) radiation fields at least 10^3 times more intense than the ambient FUV intensity in the local interstellar medium. We have constructed starburst models for the ULIRGs based on their H_2 properties, as well as on the intensities of the recombination lines. Our models provide a consistent picture of young 1-5Myr star clusters surrounded by relatively dense PDRs which are irradiated by intense FUV fluxes. Comparison to the inner few hundred parsecs of the Milky Way indicates that the star formation efficiency in ULIRGs is 10--100 times higher than in the Galactic Center.Comment: accepted by ApJ (32 pages including figures

    Size of the Vela Pulsar's Radio Emission Region: 500 km

    Full text link
    We use interstellar scattering of the Vela pulsar to determine the size of its emission region. From interferometric phase variations on short baselines, we find that radio-wave scattering broadens the source by 3.4+/-0.3 milliarcseconds along the major axis at position angle 81+/-3 degrees. The ratio of minor axis to major axis is 0.51+/-0.03. Comparison of angular and temporal broadening indicates that the scattering material lies in the Vela-X supernova remnant surrounding the pulsar. From the modulation of the pulsar's scintillation on very short baselines, we infer a size of 500 km for the pulsar's emission region. We suggest that radio-wave refraction within the pulsar's magnetosphere may plausibly explain this size.Comment: 14 pages, includes 2 figures. Also available at: http://charm.physics.ucsb.edu:80/people/cgwinn/cgwinn_group/cgwinn_group.htm
    corecore