180,887 research outputs found
Comprehension of familiar and unfamiliar native accents under adverse listening conditions
This study aimed to determine the relative processing cost associated with comprehension of an unfamiliar native accent under adverse listening conditions. Two sentence verification experiments were conducted in which listeners heard sentences at various signal-to-noise ratios. In Experiment 1, these sentences were spoken in a familiar or an unfamiliar native accent or in two familiar native accents. In Experiment 2, they were spoken in a familiar or unfamiliar native accent or in a nonnative accent. The results indicated that the differences between the native accents influenced the speed of language processing under adverse listening conditions and that this processing speed was modulated by the relative familiarity of the listener with the native accent. Furthermore, the results showed that the processing cost associated with the nonnative accent was larger than for the unfamiliar native accent
Nonpotential magnetic fields at sites of gamma ray flares
The relation between the degree of nonpotentiality of photospheric magnetic fields and the occurrence of gamma ray flares is examined. The parameter delta phi (magnetic shear) and the strength of the magnetic field intensity are used as measures of the degree of nonpotentiality, where delta phi is defined as the angular difference between the observed direction of the transverse component of the photospheric field and the direction of the potential field prescribed by the distribution of measured photospheric flux. An analysis of the great flare of April 24 to 25, 1984 is presented as an example of this technique to quantify the nonpotential characteristics of the pre-flare magnetic field. For this flare, which produced a large gamma ray event, strong shear and high field strengths prevailed over an extended length of the magnetic neutral line where the flare occurred. Moreover, the flare began near the area of strongest measured shear (89 to 90 deg). Four other flaring regions were analyzed; one of these produced a moderate gamma ray event while the other three did not produce detectable gamma rays. For all four regions the flares were located in the area where the field was not nonpotential, regardless of the class of flare. The fields of the gamma ray flares were compared with those associated with the flares without gamma rays, and little distinction was found in the degree of magnetic shear. The major difference is seen in the extent of the sheared field: for gamma ray events, the field is sheared over a longer length of the neutral line
Continuum theory of tilted chiral smectic phases
We demonstrate that the sequence of distorted commensurate phases observed in
tilted chiral smectics is explained by the gain in electrostatic energy due to
the lock-in of the unit cell to a number of layers which is the integer closest
to the ratio pitch over thickness of the subjacent Sm-C phase. We
also explain the sign change of the helicity in the middle of the sequence by a
balance between two twist sources one intrinsic and another due to the
distortion of the Sm-C
High spatial resolution 100 micron observations of the M83 bar
A program of high spatial resolution far-infrared observations of galaxies using the Kuiper Airborne Observatory (KAO), was conducted to better understand the role of star formation, the general interstellar radiation field, and non-thermal activity in powering the prodigious far-infrared luminosities seen in spiral and interacting galaxies. Here, researchers present observations of the central region of the well-known barred spiral M83 (NGC 5236). The resultant channel 3 scans for M83 and IRC + 10216, after co-addition and smoothing, are shown. These data show that M83 is extended at 100 microns compared to a point source. A simple Gaussian deconvolution of the M83 data with the point source profile from IRC+10216 gives a full width half maximum (FWHM) of about 19 seconds for M83. By comparison with IRC+10216, researchers obtain a flux for the unresolved component in M83 of about 110 Jy. This is about 1/6 the total flux for M83 (Rice et al. 1988) and about 1/2 the PSC flux. The M83 and IRC+10216 profiles in the cross-scan direction (SE-NW) were also compared, and show that M83 is extended in this direction as well, with a width of about 18 seconds. A comparison of the different channel profiles for M83 and IRC+10216 shows that there is an asymmetry in the M83 data, in that the maximum in the profiles shifts from southeast to northwest as channel number increases. This corresponds to the extension in the bar seen in the CO data. Thus the far-infrared emission in the central region of M83 tends to trace the CO bar. The new 100 micron data is also compared with previous H alpha observations from the literature, to determine how well the far-infrared traces the stellar structure, the star formation as measured by H alpha, and the optical colors
Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients
We analyze the reflection and transmission coefficients calculated from
transfer matrix simulations on finite lenghts of electromagnetic metamaterials,
to determine the effective permittivity and permeability. We perform this
analysis on structures composed of periodic arrangements of wires, split ring
resonators (SRRs) and both wires and SRRs. We find the recovered
frequency-dependent permittivity and permeability are entirely consistent with
analytic expressions predicted by effective medium arguments. Of particular
relevance are that a wire medium exhibits a frequency region in which the real
part of permittivity is negative, and SRRs produce a frequency region in which
the real part of permeability is negative. In the combination structure, at
frequencies where both the recovered real part of permittivity and permeability
are simultaneously negative, the real part of the index-of-refraction is found
also to be unambigously negative.Comment: *.pdf file, 5 figure
OSO-8 X-ray spectra of clusters of galaxies. 2: Discussion
X-ray spectral parameters obtained from 2 to 20 keV OSO-8 data on X-ray clusters and optical cluster properties were examined to obtain information for restricting models for hot intracluster gas structures. Topics discussed include the radius of the X-ray core in relation to the galaxy core radius, the viral mass of hotter clusters, and galaxy density and optical central cluster properties. A population of cool, dim X-ray clusters which have not been observed is predicted. The iron abundance determinations recently quoted for intracluster gas are uncertain by 50 to greater than 100 percent from this nonstatistical cause alone
Subsystems Test Bed /STB/ Thermal Math Model /TMM/ documentation
Subsystems test bed thermal mathematical model documentatio
Quasars in the 2MASS Second Incremental Data Release
Using the 2MASS Second Incremental Data Release, we have searched for near
infrared counterparts to 13214 quasars from the Veron-Cetty & Veron(2000)
catalog. We have detected counterparts within 4 arcsec for 2277 of the
approximately 6320 quasars within the area covered by the 2MASS Second
Incremental Data Release. Only 1.6% of these are expected to be chance
coincidences. Though this sample is heterogeneous, we find that known
radio-loud quasars are more likely to have large near-infrared-to-optical
luminosity ratios than radio-quiet quasars are, at a statistically significant
level. This is consistent with dust-reddened quasars being more common in
radio-selected samples than in optically-selected samples, due to stronger
selection effects against dust-reddened quasars in the latter. We also find a
statistically significant dearth of optically luminous quasars with large
near-infrared-to-optical luminosity ratios. This can be explained in a dust
obscuration model but not in a model where synchrotron emission extends from
the radio into the near-infrared and creates such large ratios. We also find
that selection of quasar candidates from the B-J/J-K color-color diagram,
modelled on the V-J/J-K selection method of Warren, Hewett & Foltz (2000), is
likely to be more sensitive to dust-obscured quasars than selection using only
infrared-infrared colors.Comment: To be published in May issue of Astronomical Journal (26 pages, 8
figures, 2 tables) Replaced Figure 6 and
A multiprocessor implementation of a contextual image processing algorithm
There are no author-identified significant results in this report
Enhanced electron correlations at the SrxCa1-xVO3 surface
We report hard x-ray photoemission spectroscopy measurements of the
electronic structure of the prototypical correlated oxide SrxCa1-xVO3. By
comparing spectra recorded at different excitation energies, we show that 2.2
keV photoelectrons contain a substantial surface component, whereas 4.2 keV
photoelectrons originate essentially from the bulk of the sample.
Bulk-sensitive measurements of the O 2p valence band are found to be in good
agreement with ab initio calculations of the electronic structure, with some
modest adjustments to the orbital-dependent photoionization cross sections. The
evolution of the O 2p electronic structure as a function of the Sr content is
dominated by A-site hybridization. Near the Fermi level, the correlated V 3d
Hubbard bands are found to evolve in both binding energy and spectral weight as
a function of distance from the vacuum interface, revealing higher correlation
at the surface than in the bulk
- …