1,668 research outputs found

    Intergenerational continuities in ethnic inequalities in health in the UK

    Get PDF
    Previous research strongly suggests that ethnic minorities are more likely to suffer a poorer health profile compared to the overall population. Trends have emerged to suggest that social factors such as socioeconomic status and health behaviours are not fixed across generations and have a role to play in these inequalities in health. This thesis investigated the differences in ethnic inequalities in health between the first and second generations, and determined the extent to which intergenerational changes in socioeconomic status and health behavioural factors might explain any variation that exists. The study used ethnically‐boosted data from the third sweep of the Millennium Cohort Study (n=14,860) and the combined 1999 and 2004 Health Survey for England (n=28,628). Crosssectional analysis investigated generational differences in self rated general health, limiting illness, obesity, hypertension, depression, psychological distress and a range of biomarkers of cardiovascular disease, across the major ethnic minority groups in the UK (Indian, Pakistani, Bangladeshi, Black Caribbean, Black African, Irish, Chinese and Other). Children were additionally assessed for levels of cognitive development using the British Abilities Scales II. The generational change in socioeconomic circumstances (social class, highest educational qualification and household income) and the extent of acculturation (current smoking and drinking status, dietary behaviours and patterns of breastfeeding, immunisations and physical exercise) was examined. Strong upward intergenerational socioeconomic mobility in ethnic minority groups did not lead to improving health profiles. The second generation required greater levels of social advantage than the first generation to achieve the same level of health. Acculturative shifts led to a worsening in health behaviours, although the degree of change was highly ethnic group specific. Findings showed that the social and economic contexts, and the cultural identities and behaviours of ethnic minorities, differ across generations, but ultimately their opposing influences on health result in stable overall patterns of health inequality across generations

    Advanced maternal age causes adverse programming of mouse blastocysts leading to altered growth and impaired cardiometabolic health in post-natal life

    No full text
    Study question: does advanced maternal age (AMA) in mice affect cardiometabolic health during post-natal life in offspring derived from an assisted reproduction technology (ART) procedure?Summary answer: offspring derived from blastocysts collected from aged female mice displayed impaired body weight gain, blood pressure, glucose metabolism and organ allometry during post-natal life compared with offspring derived from blastocysts from young females; since all blastocysts were transferred to normalized young mothers, this effect is independent of maternal pregnancy conditions.What is known already: although studies in mice have shown that AMA can affect body weight and behaviour of offspring derived from natural reproduction, data on the effects of AMA on offspring cardiometabolic health during post-natal development are not available. Given the increasing use of ART to alleviate infertility in women of AMA, it is pivotal to develop ART–AMA models addressing the effects of maternal aging on offspring health.Study design, size, duration: blastocysts from old (34–39 weeks) or young (8–9 weeks) C57BL/6 females mated with young CBA males (13–15 weeks) were either subjected to differential cell staining (inner cell mass and trophectoderm) or underwent embryo transfer (ET) into young MF1 surrogates (8–9 weeks) to produce young (Young-ET, 9 litters) and old (Old-ET, 10 litters) embryo-derived offspring. Offspring health monitoring was carried out for 30 weeks.Participants/materials, setting, methods: all animals were fed with standard chow. Blood pressure was measured at post-natal Weeks 9, 15 and 21, and at post-natal Week 30 a glucose tolerance test (GTT) was performed. Two days after the GTT mice were killed for organ allometry. Blastocyst cell allocation variables were evaluated by T-test and developmental data were analysed with a multilevel random effects regression model.Main results and the role of chance: the total number of cells in blastocysts from aged mice was decreased (P < 0.05) relative to young mice due to a lower number of cells in the trophectoderm (mean ± SEM: 34.5 ± 2.1 versus 29.6 ± 1.0). Weekly body weight did not differ in male offspring, but an increase in body weight from Week 13 onwards was observed in Old-ET females (final body weight at post-natal Week 30: 38.5 ± 0.8 versus 33.4 ± 0.8 g, P < 0.05). Blood pressure was increased in Old-ET offspring at Weeks 9–15 in males (Week 9: 108.5 ± 3.13 versus 100.8 ± 1.5 mmHg, Week 15: 112.9 ± 3.2 versus 103.4 ± 2.1 mmHg) and Week 15 in females (115.9 ± 3.7 versus 102.8 ± 0.7 mmHg; all P < 0.05 versus Young-ET). The GTT results and organ allometry were not affected in male offspring. In contrast, Old-ET females displayed a greater (P < 0.05) peak glucose concentration at 30 min during the GTT (21.1 ± 0.4 versus 17.8 ± 1.16 mmol/l) and their spleen weight (88.2 ± 2.6 ± 105.1 ± 4.6 mg) and several organ:body weight ratios (g/g × 103) were decreased (P < 0.05 versus Young-ET), including the heart (3.7 ± 0.06 versus 4.4 ± 0.08), lungs (4.4 ± 0.1 versus 5.0 ± 0.1), spleen (2.4 ± 0.06 versus 3.2 ± 0.1) and liver (36.4 ± 0.6 versus 39.1 ± 0.9).Limitations, reasons for caution: results from experimental animal models cannot be extrapolated to humans. Nevertheless, they are valuable to develop conceptual models that can produce hypotheses for eventual testing in the target species (i.e. humans).Wider implications of the findings: our data show that offspring from mouse embryos from aged mothers can develop altered phenotypes during post-natal development compared with embryos from young mothers. Because all embryos were transferred into young mothers for the duration of pregnancy to normalize the maternal in vivo environment, our findings indicate that adverse programming via AMA is already established at the blastocyst stage. Whilst human embryos display increased aneuploidy compared with mouse, we believe our data have implications for women of AMA undergoing assisted reproduction, including surrogacy programmes.Study funding/competeing interest(s): this work was supported through the European Union FP7-CP-FP Epihealth programme (278418) to T.P.F. and the BBSRC (BB/F007450/1) to T.P.F. The authors have no conflicts of interest to declar

    Self-energy and Self-force in the Space-time of a Thick Cosmic String

    Get PDF
    We calculate the self-energy and self-force for an electrically charged particle at rest in the background of Gott-Hiscock cosmic string space-time. We found the general expression for the self-energy which is expressed in terms of the SS matrix of the scattering problem. The self-energy continuously falls down outward from the string's center with maximum at the origin of the string. The self-force is repulsive for an arbitrary position of the particle. It tends to zero in the string's center and also far from the string and it has a maximum value at the string's surface. The plots of the numerical calculations of the self-energy and self-force are shown.Comment: 15 pages, 4 Postscript figures, ReVTe

    SCUBA Observations of the Host Galaxies of Gamma-Ray Bursts

    Get PDF
    In recent years, a population of galaxies with huge infrared luminosities and dust masses has been discovered in the submillimetre. Observations suggest that the AGN contribution to the luminosities of these submillimetre-selected galaxies is low; instead their luminosities are thought to be mainly due to strong episodes of star formation following merger events. Our current understanding of GRBs as the endpoints in the life of massive stars suggest that they will be located in such galaxies.We have observed a sample of well-located GRB host galaxies in the submillimetre. Comparing the results with the general submillimetre-selected galaxy population, we find that at low fluxes (S850 ≤ 4 mJy), the two agree well. However, there is a lack of bright GRB hosts in the submillimetre. This finding is reinforced when the results of other groups are included. Possible explanations are discussed. These results help us assess the roles of both GRB host galaxies and submillimetre-selected galaxies in the evolution of the Universe

    Regional forecasting with global atmospheric models; Fourth year report

    Get PDF
    The scope of the report is to present the results of the fourth year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

    Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex

    Get PDF
    As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that α-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-d-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field
    corecore