13 research outputs found

    Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite

    Get PDF
    The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at 6K. The observed spectral features are in very good agreement with the vibrational density of states (vDOS) of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on the restrictions imposed by the electronic structure of graphite. We also demonstrate for the first time the local excitation of surface-plasmons in IETS which are detected at an energy of 40 meV.Comment: PRB rapid communication, submitte

    Energetics, forces, and quantized conductance in jellium modeled metallic nanowires

    Full text link
    Energetics and quantized conductance in jellium modeled nanowires are investigated using the local density functional based shell correction method, extending our previous study of uniform in shape wires [C. Yannouleas and U. Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable shaped constricted region. The energetics of the wire (sodium) as a function of the length of the volume conserving, adiabatically shaped constriction leads to formation of self selecting magic wire configurations. The variations in the energy result in oscillations in the force required to elongate the wire and are directly correlated with the stepwise variations of the conductance of the nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and forces, and the correlated stepwise variation in the conductance are shown, numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse states at the narrowmost part of the constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure

    5 Applications

    No full text
    corecore