29,338 research outputs found

    Multinomial selection index

    Get PDF
    Comparison of multivariate statistical analysis techniques for multinomial selection indice

    Nutritional Biochemistry of Space Flight

    Get PDF
    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, m~tabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker~ of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng space flight. This is critical due to the red blood cell changes which occur, and the increase in iron storage that has been observed after space flight. The Iron Absorption and Metabolism experiment is currently planned for long-term flights on the International Space Station

    Nutrition for Space Exploration

    Get PDF
    Nutrition has proven to be critical throughout the history of human exploration, on both land and water. The importance of nutrition during long-duration space exploration is no different. Maintaining optimal nutritional status is critical for all bodily systems, especially in light of the fact that that many are also affected by space flight itself. Major systems of concern are bone, muscle, the cardiovascular system, the immune system, protection against radiation damage, and others. The task ahead includes defining the nutritional requirements for space travelers, ensuring adequacy of the food system, and assessing crew nutritional status before, during, and after flight. Accomplishing these tasks will provide significant contributions to ensuring crew health on long-duration missions. In addition, development and testing of nutritional countermeasures to effects of space flight is required, and assessment of the impact of other countermeasures (such as exercise and pharmaceuticals) on nutrition is also critical for maintaining overall crew health. Vitamin D stores of crew members are routinely low after long-duration space flight. This occurs even when crew members take vitamin D supplements, suggesting that vitamin D metabolism may be altered during space flight. Vitamin D is essential for efficient absorption of calcium, and has numerous other benefits for other tissues with vitamin D receptors. Protein is a macronutrient that requires additional study to define the optimal intake for space travelers. Administration of protein to bed rest subjects can effectively mitigate muscle loss associated with disuse, but too much or too little protein can also have negative effects on bone. In another bed rest study, we found that the ratio of protein to potassium was correlated with the level of bone resorption: the higher the ratio, the more bone resorption. These relationships warrant further study to optimize the beneficial effect of protein on both bone and muscle during space flight. Omega3 fatty acids are currently being studied as a means of protecting against radiation-induced cancer. They have also recently been implicated as having a role in mitigating the physical wasting, or cachexia, caused by cancer. The mechanism of muscle loss associated with this type of cachexia is similar to the mechanism of muscle loss during disuse or space flight. Omega3 fatty acids have already been shown to have protective effects on bone and cardiovascular function. Omega3 fatty acids could be an ideal countermeasure for space flight because they have protective effects on multiple systems. A definition of optimal nutrient intake requirements for long-duration space travel should also include antioxidants. Astronauts are exposed to numerous sources of oxidative stress, including radiation, elevated oxygen exposure during extravehicular activity, and physical and psychological stress. Elevated levels of oxidative damage are related to increased risk for cataracts, cardiovascular disease, and cancer. Many groundbased studies show the protective effects of antioxidants against oxidative damage induced by radiation or oxygen. Balancing the diet with foods that have high levels of antioxidants would be another ideal countermeasure because it should have minimal side effects on crew health. Antioxidant supplements, however, are often used without having data on their effectiveness or side effects. High doses of supplements have been associated with bone and cardiovascular problems, but research on antioxidant effects during space flight has not been conducted. Much work must be done before we can send crews on exploration missions. Nutrition is often assumed to be the simple provision of food items that will be stable throughout the mission. As outlined briefly above, the situation is much more complex than food provision. As explorers throughout history have found, failure to truly understand the role of nutrition can be catastrophic. When huns are in environments unlike any they have seen before, this is more true than ever

    Characterization of Freshwater Natural Dissolved Organic Matter (DOM): Mechanistic Explanations for Protective Effects Against Metaltoxicity and Direct Effects on Organisms

    Get PDF
    Dissolved organic matter (DOM) exerts direct and indirect influences on aquatic organisms. In order to better understand how DOM causes these effects, potentiometric titration was carried out for a wide range of autochthonous and terrigenous freshwater DOM isolates. The isolates were previously characterized by absorbance and fluorescence spectroscopy. Proton binding constants (pKa) were grouped into three classes:acidic (pKa ≤ 5), intermediate (5 \u3c pKa ≤ 8.5) and basic (pKa \u3e 8.5). Generally, the proton site densities (LT) showed maximum peaks at the acidic and basic ends around pKa values of 3.5 and 10, respectively. More variably positioned peaks occurred in the intermediate pKa range. The acid–base titrations revealed the dominance of carboxylic and phenolic ligands with a trend for more autochthonous sources to have higher total LT. A summary parameter, referred to as the Proton Binding Index (PBI), was introduced to summarize chemical reactivity of DOMs based on the data of pKa and LT. Then, the already published spectroscopic data were explored and the specific absorbance coefficient at 340 nm (i.e. SAC340), an index of DOM aromaticity,was found to exhibit a strong correlation with PBI. Thus, the tendencies observed in the literature that darker organic matter is more protective against metal toxicity and more effective in altering physiological processes in aquatic organisms can now be rationalized on a basis of chemical reactivity to protons

    The Influence of Dissolved Organic Matter (DOM) on Sodium Regulation and Nitrogenous Waste Excretion in the Zebrafish (Danio rerio)

    Get PDF
    Dissolved organic matter (DOM) is both ubiquitous and diverse in composition in natural waters, but its effects on the branchial physiology of aquatic organisms have received little attention relative to other variables (e.g. pH, hardness, salinity, alkalinity). Here, we investigated the effects of four chemically distinct DOM isolates (three natural, one commercial, ranging from autochthonous to highly allochthonous, all at ∼6 mg C l−1) on the physiology of gill ionoregulation and nitrogenous waste excretion in zebrafish acclimated to either circumneutral (7.0–8.0) or acidic pH (5.0). Overall, lower pH tended to increase net branchial ammonia excretion, net K+ loss and [3H]PEG-4000 clearance rates (indicators of transcellular and paracellular permeability, respectively). However, unidirectional Na+ efflux, urea excretion and drinking rates were unaffected. DOM sources tended to stimulate unidirectional Na+ influx rate and exerted subtle effects on the concentration-dependent kinetics of Na+ uptake, increasing maximum transport capacity. All DOM sources reduced passive Na+ efflux rates regardless of pH, but exerted negligible effects on nitrogenous waste excretion, drinking rate, net K+ loss or [3H]PEG4000 clearance, so the mechanism of Na+ loss reduction remains unclear. Overall, these actions appear beneficial to ionoregulatory homeostasis in zebrafish, and some may be related to physicochemical properties of the DOM sources. They are very different from those seen in a recent parallel study on Daphnia magna using the same DOM isolates, indicating that DOM actions may be both species and DOM specific

    Quality of Legume Inoculants in Kentucky

    Get PDF
    Successful and profitable production of legumes requires nodulation by Rhizobium bacteria which supply the crop with fixed N. The appropriate strains of bacteria are often absent from soils, since they do not persist without a suitable host plant. Under these conditions, that is when the specific legume crop has not been planted in the field for more than 3 or 4 years, it is necessary to inoculate the seed (or sometimes the soil) with Rhizobium

    Soil Microbes and Biotechnology

    Get PDF
    There is nothing new about attempts to develop and market microbial products for crop or soil improvement. Several types of microbes have been sold for a variety of agronomic purposes for many years. With the important exception of rhizobial inoculants. these have been generally unsuccessful. Recently however. the scientific revolution in genetics and molecular biology, the need for low cost agronomic inputs. and widespread concern for environmental safety have tremendously stimulated research and commercial activity on microbial products. Claims that cheap, effective microbial inoculants can be developed for pest control, detoxifying pollutants, providing plant nutrients and improving soils have been well publicized
    • …
    corecore