17,356 research outputs found

    An Experiment in Model Driven Architecture for e-Enterprise Systems

    Get PDF
    OMG's Model Driven Architecture demonstrates how a system's specification model can be used within the process of creating supporting software implementations. This article documents the findings of an experiment aimed at determining the extent to which this method of software engineering can be used within the domain of e-Enterprise systems

    Using parallel computation to improve Independent Metropolis--Hastings based estimation

    Full text link
    In this paper, we consider the implications of the fact that parallel raw-power can be exploited by a generic Metropolis--Hastings algorithm if the proposed values are independent. In particular, we present improvements to the independent Metropolis--Hastings algorithm that significantly decrease the variance of any estimator derived from the MCMC output, for a null computing cost since those improvements are based on a fixed number of target density evaluations. Furthermore, the techniques developed in this paper do not jeopardize the Markovian convergence properties of the algorithm, since they are based on the Rao--Blackwell principles of Gelfand and Smith (1990), already exploited in Casella and Robert (1996), Atchade and Perron (2005) and Douc and Robert (2010). We illustrate those improvements both on a toy normal example and on a classical probit regression model, but stress the fact that they are applicable in any case where the independent Metropolis-Hastings is applicable.Comment: 19 pages, 8 figures, to appear in Journal of Computational and Graphical Statistic

    Effects of Interactions on the Critical Temperature of a Trapped Bose Gas

    Full text link
    We perform high-precision measurements of the condensation temperature of a harmonically-trapped atomic Bose gas with widely-tuneable interactions. For weak interactions we observe a negative shift of the critical temperature in excellent agreement with mean-field theory. However for sufficiently strong interactions we clearly observe an additional positive shift, characteristic of beyond-mean-field critical correlations. We also discuss non-equilibrium effects on the apparent critical temperature for both very weak and very strong interactions.Comment: 4 pages, 4 figure

    An Evaluation of the New York State Workers’ Compensation Pilot Program for Alternative Dispute Resolution

    Get PDF
    In 1995, the State 0f New York enacted legislation authorizing the establishment of a workers\u27 compensation alternative dispute resolution pilot program for the unionized sector of the construction industry. Collective bargaining agreements could establish an alternative dispute resolution process for resolving claims (including but not limited to mediation and arbitration), use of an agreed managed care organization or list of authorized providers for medical treatment that constitutes the exclusive source of all medical and related treatment, supplemental benefits, return-to-work programs, and vocational rehabilitation programs. The legislation also directed the School ofIndustrial and Labor Relations at Cornell University (ILR) to evaluate compliance with state and federal due process requirements provided in the collective bargaining agreements authorized by this act, and the use, costs and merits of the alternative dispute resolution system established pursuant to this act. In response to this legislative mandate, ILR reviewed the research previously conducted on alternative dispute resolution (ADR), generally, and in workers\u27 compensation. This included examining the purported advantages and disadvantages of ADR, the prevalence of ADR, and published statistical or anecdotal evidence regarding the impact of ADR. ILR created a research design for claimant-level and project-level analyses, and developed data collection instruments for these analyses that included an injured worker survey for ADR claimants and claimants in the traditional (statutory)workers\u27 compensation system, an Ombudsman\u27s log, a manual of data elements pertaining to ADR and comparison group claimants, and interview questions for ADR signatories and other officials. The findings in this report draw upon a comparison of claimant-level, descriptive statistics (averages) for injured workers in the ADR and traditional (statutory) workers\u27 compensation system; the results of more sophisticated, statistical analyses of claimant-level data; and project-level information (including, but not limited to, interviews with ADR signatories and dispute resolution officials)

    Purification of large bicolorable graph states

    Get PDF
    We describe novel purification protocols for bicolorable graph states. The protocols scale efficiently for large graph states. We introduce a method of analysis that allows us to derive simple recursion relations characterizing their behavior as well as analytical expressions for their thresholds and fixed point behavior. We introduce two purification protocols with high threshold. They can, for graph degree four, tolerate 1% (3%) gate error or 20% (30%) local error.Comment: 12 pages, 5 figures, revtex; typos and clarifications adde

    Tick-Borne Diseases of Humans

    Get PDF

    Effects of Interactions on Bose-Einstein Condensation

    Get PDF
    Bose-Einstein condensation is a unique phase transition in that it is not driven by inter-particle interactions, but can theoretically occur in an ideal gas, purely as a consequence of quantum statistics. This chapter addresses the question \emph{`How is this ideal Bose gas condensation modified in the presence of interactions between the particles?' } This seemingly simple question turns out to be surprisingly difficult to answer. Here we outline the theoretical background to this question and discuss some recent measurements on ultracold atomic Bose gases that have sought to provide some answers

    The classical capacity of quantum thermal noise channels to within 1.45 bits

    Full text link
    We find a tight upper bound for the classical capacity of quantum thermal noise channels that is within 1/ln21/\ln 2 bits of Holevo's lower bound. This lower bound is achievable using unentangled, classical signal states, namely displaced coherent states. Thus, we find that while quantum tricks might offer benefits, when it comes to classical communication they can only help a bit.Comment: Two pages plus a bi
    corecore