34 research outputs found

    A Commensal Helicobacter sp. of the Rodent Intestinal Flora Activates TLR2 and NOD1 Responses in Epithelial Cells

    Get PDF
    Helicobacter spp. represent a proportionately small but significant component of the normal intestinal microflora of animal hosts. Several of these intestinal Helicobacter spp. are known to induce colitis in mouse models, yet the mechanisms by which these bacteria induce intestinal inflammation are poorly understood. To address this question, we performed in vitro co-culture experiments with mouse and human epithelial cell lines stimulated with a selection of Helicobacter spp., including known pathogenic species as well as ones for which the pathogenic potential is less clear. Strikingly, a member of the normal microflora of rodents, Helicobacter muridarum, was found to be a particularly strong inducer of CXC chemokine (Cxcl1/KC, Cxcl2/MIP-2) responses in a murine intestinal epithelial cell line. Time-course studies revealed a biphasic pattern of chemokine responses in these cells, with H. muridarum lipopolysaccharide (LPS) mediating early (24–48 h) responses and live bacteria seeming to provoke later (48–72 h) responses. H. muridarum LPS per se was shown to induce CXC chemokine production in HEK293 cells stably expressing Toll-like receptor 2 (TLR2), but not in those expressing TLR4. In contrast, live H. muridarum bacteria were able to induce NF-κB reporter activity and CXC chemokine responses in TLR2–deficient HEK293 and in AGS epithelial cells. These responses were attenuated by transient transfection with a dominant negative construct to NOD1, and by stable expression of NOD1 siRNA, respectively. Thus, the data suggest that both TLR2 and NOD1 may be involved in innate immune sensing of H. muridarum by epithelial cells. This work identifies H. muridarum as a commensal bacterium with pathogenic potential and underscores the potential roles of ill-defined members of the normal flora in the initiation of inflammation in animal hosts. We suggest that H. muridarum may act as a confounding factor in colitis model studies in rodents

    A multi-disciplinary commentary on preclinical research to investigate vascular contributions to dementia

    Get PDF
    Although dementia research has been dominated by Alzheimer's disease (AD), most dementia in older people is now recognised to be due to mixed pathologies, usually combining vascular and AD brain pathology. Vascular cognitive impairment (VCI), which encompasses vascular dementia (VaD) is the second most common type of dementia. Models of VCI have been delayed by limited understanding of the underlying aetiology and pathogenesis. This review by a multidisciplinary, diverse (in terms of sex, geography and career stage), cross-institute team provides a perspective on limitations to current VCI models and recommendations for improving translation and reproducibility. We discuss reproducibility, clinical features of VCI and corresponding assessments in models, human pathology, bioinformatics approaches, and data sharing. We offer recommendations for future research, particularly focusing on small vessel disease as a main underpinning disorder

    Differential antimicrobial activity in response to the entomopathogenic fungus Cordyceps in six Australian bee species

    No full text
    Microbial pathogens were important in the evolution of insect societies and remain a major cause of colony death. The differential effects are reported of antimicrobial compounds extracted from six species of Australian native bees on the spores and hyphae of the entomopathogenic fungus Cordyceps bassiana. The bee species were: Amegilla bombiformis, A. asserta, Exoneura robusta, E. nigrescens, Exoneurella tridentata and Trigona carbonaria. The fungus was isolated from E. robusta and it was this species that showed the greatest activity against both Cordyceps spore germination and hyphal growth. One explanation is that anti-Cordyceps activity may have been under greatest selection in this bee species, but its congener, E. nigrescens, showed only slightly weaker activity against the pathogen. In contrast, A. bombiformis, A. asserta, E. tridentata and T. carbonaria showed considerable variation in anti-Cordyceps activity. Nevertheless, there was a trend of greater activity against Cordyceps spore germination than hyphal growth. On the basis of this result, a mechanism whereby fungal pathogens may have been important drivers of social evolution is suggested

    Dependence of colorectal cancer risk on the parent-of-origin of mutations in DNA mismatch repair genes

    No full text
    Genetic diseases associated with dynamic mutations in microsatellite DNA often display parent-of-origin effects (POEs) in which the risk of disease depends on the sex of the parent from whom the disease allele was inherited. Carriers of germline mutations in mismatch repair (MMR) genes have high risks of colorectal carcinoma (CRC). We investigated whether these risks depend on the parent-of-origin of the mutation. We studied 422 subjects, including 89 MMR gene mutation carriers, from 17 population-based families who were each recruited via a CRC case diagnosed before age 45 years and found to carry a MMR gene mutation. The POE hazard ratio (HRPOE), defined to be the CRC incidence for carriers with maternally derived mutations divided by the corresponding paternal incidence, was estimated using a novel application of modified segregation analysis. HRPOE (95% confidence interval) was estimated to be 3.2 (1.1–9.8) for males (P = 0.03) and 0.8 (0.2–2.8) for females (P = 0.5) and the corresponding cumulative risks to age 80 years were 88% (54%–100%) for male carriers with maternally derived mutations and 38–48% for all other carriers. If confirmed by larger studies, these results will have important implications for the etiology of CRC and for the clinical management of MMR gene mutation carriers
    corecore