17,689 research outputs found

    On modelling fluid/body interactions, impacts and lift-offs

    Get PDF
    A description is given of recent progress in the understanding of mechanisms in fluid-body interactions where the motion of a body and the motion of the surrounding fluid affect each other substantially. The mathematical modelling of such unsteady interactions is for internal channel and external near-wall flows in two spatial dimensions and time. The emphasis throughout is on analytical developments with accompanying reduced computation. The successive aspects studied here are interactions and impacts in inviscid flows, skimming and sinking, the lift-off, fly-away or bouncing of a body, and viscous effects including especially the interplay between viscous and inviscid contributions. The main findings are concerned with physical and mechanical insights into impact times, lift-off criteria, the borders between impact and fly-away, the principal parameters and their ranges and the influences from body shape and mass

    A mystery solved: the mass ratio of the dwarf nova EM Cygni

    Get PDF
    We have discovered that the spectrum of the well-known dwarf nova EM Cyg is contaminated by light from a K2-5V star (in addition to the K-type mass donor star). The K2-5V star contributes approximately 16 per cent of the light from the system and if not taken into account has a considerable effect upon radial velocity measurements of the mass donor star. We obtain a new radial velocity amplitude for the mass donor star of K2 = 202 +/- 3 km/s, which compares with the value of K2 = 135 +/- 3 km/s obtained in Stover, Robinson & Nather's classic 1981 study of EM Cyg. The revised value of the amplitude combined with a measurement of rotational broadening of the mass donor vsini = 140 +/- 6 km/s, leads to a new mass ratio of q = M2/M1 = 0.88 +/- 0.05. This solves a long standing problem with EM Cyg because Stover et al.'s measurements indicated a mass ratio q > 1, a value which should have led to dynamically unstable mass transfer for the secondary mass deduced by Stover et al. The revised value of the mass ratio combined with the orbital inclination i = 67 +/- 2 degrees leads to masses of 0.99 +/- 0.12 Msun and 1.12 +/- 0.08 Msun for the mass donor and white dwarf respectively. The mass donor is evolved, since it has a later spectral type (K3) than its mass would imply. We discuss whether the K star could be physically associated with EM Cyg or not, and present the results of the spectroscopic study.Comment: 10 pages, 12 figures, accepted for publication in MNRA

    Found: High Surface Brightness Compact Galaxies

    Full text link
    We are using the 2dF spectrograph to make a survey of all objects (`stars' and `galaxies') in a 12 sq.deg region towards the Fornax cluster. We have discovered a population of compact emission-line galaxies unresolved on photographic sky survey plates and therefore missing in most galaxy surveys based on such material. These galaxies are as luminous as normal field galaxies. Using H-alpha to estimate star formation they contribute at least an additional 5 per cent to the local star formation rate.Comment: To appear in "The Low Surface Brightness Universe", IAU Coll 171, eds. J.I. Davies et al., A.S.P. Conference Series. 3 pages, LaTex, 1 encapsulated ps-figure, requires paspconf.st

    Lack of utility of chimerism studies obtained 2-3 months after myeloablative hematopoietic cell transplantation for ALL.

    Get PDF
    Lineage-specific chimerism studies are commonly obtained at several time points after nonmyeloablative hematopoietic cell transplantation to assess the tempo and degree of engraftment, and to monitor graft rejection. For patients who receive myeloablative transplants, the value of frequent chimerism analyses using sensitive molecular techniques is less certain. In this study, a retrospective analysis was performed to assess the transplant outcome of 89 adult patients with ALL who had chimerism studies of unfractionated BM cells or peripheral blood subsets performed approximately 80 days after transplantation. These patients received unmanipulated, myeloablative transplants using either HLA-identical or HLA-mismatched, related or unrelated donor stem cells. Incomplete donor engraftment was present only in the CD3+ peripheral blood T cells in a small percentage of patients. There was no correlation of mixed chimerism with transplant outcome. Routine 'day 80' chimerism studies in this group of patients who receive intensive, myeloablative conditioning regimens are not recommended

    Real-Time Prediction of Gas Flow Dynamics in Diesel Engines using a Deep Neural Operator Framework

    Full text link
    We develop a data-driven deep neural operator framework to approximate multiple output states for a diesel engine and generate real-time predictions with reasonable accuracy. As emission norms become more stringent, the need for fast and accurate models that enable analysis of system behavior have become an essential requirement for system development. The fast transient processes involved in the operation of a combustion engine make it difficult to develop accurate physics-based models for such systems. As an alternative to physics based models, we develop an operator-based regression model (DeepONet) to learn the relevant output states for a mean-value gas flow engine model using the engine operating conditions as input variables. We have adopted a mean-value model as a benchmark for comparison, simulated using Simulink. The developed approach necessitates using the initial conditions of the output states to predict the accurate sequence over the temporal domain. To this end, a sequence-to-sequence approach is embedded into the proposed framework. The accuracy of the model is evaluated by comparing the prediction output to ground truth generated from Simulink model. The maximum L2\mathcal L_2 relative error observed was approximately 6.5%6.5\%. The sensitivity of the DeepONet model is evaluated under simulated noise conditions and the model shows relatively low sensitivity to noise. The uncertainty in model prediction is further assessed by using a mean ensemble approach. The worst-case error at the (μ+2σ)(\mu + 2\sigma) boundary was found to be 12%12\%. The proposed framework provides the ability to predict output states in real-time and enables data-driven learning of complex input-output operator mapping. As a result, this model can be applied during initial development stages, where accurate models may not be available.Comment: Updated manuscript title to better reflect this work and field of stud

    Genetic susceptibility to psoriasis: an emerging picture

    Get PDF
    Psoriasis is recognized as a complex disease for which multiple genetic and non-genetic factors influence susceptibility. The major susceptibility locus resides in the MHC class I region and, until relatively recently, evidence for non-MHC loci was inconsistent. Like many common diseases, knowledge of the genetic basis of this condition has been advanced dramatically in recent times with the advent of genome-wide association studies using single nucleotide polymorphisms. Here, we give an overview of current knowledge of genetic risk factors for psoriasis and consider emerging studies that may further add to our understanding of the genetic basis of the disease

    THE ROLE OF TIP LEAKAGE FLOW IN SPIKE-TYPE ROTATING STALL INCEPTION

    Get PDF
    This paper describes the role of tip leakage flow in creating the leading edge separation necessary for onset of spike-type compressor rotating stall. A series of unsteady multi-passage simulations, supported by experimental data, are used to define and illustrate the two competing mechanisms that cause the high incidence responsible for this separation: blockage from a casing-suction-surface corner separation and forward spillage of the tip leakage jet. The axial momentum flux in the tip leakage flow determines which mechanism dominates. At zero tip clearance, corner separation blockage dominates. As clearance is increased, the leakage flow reduces blockage, moving the stall flow coefficient to lower flow, i.e. giving a larger unstalled flow range. Increased clearance, however, means increased leakage jet momentum and contribution to leakage jet spillage. There is thus a clearance above which jet spillage dominates in creating incidence, so the stall flow coefficient increases and flow range decreases with clearance. As a consequence there is a clearance for maximum flow range; for the two rotors in this study, the value was approximately 0.5% chord. The chord-wise distribution of the leakage axial momentum is also important in determining stall onset. Shifting the distribution towards the trailing edge increases flow range for a leakage jet dominated geometry and reduces flow range for a corner separation dominated geometry. Guidelines are developed for flow range enhancement through control of tip leakage flow axial momentum magnitude and distribution. An example is given of how this might be achieved.Mitsubishi Heavy Industries, Ltd

    Interacting Supernovae: Types IIn and Ibn

    Full text link
    Supernovae (SNe) that show evidence of strong shock interaction between their ejecta and pre-existing, slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason that they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star may become wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models, but may significantly change the end product and yield of that evolution, and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing super-luminous transients to arise from normal SN explosion energies, and allowing transients of normal SN luminosities to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our normal view of the underlying explosion, and the radiation hydrodynamics of the interaction is challenging to model. The CSM interaction may also be highly non-spherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to definitively tell the difference between a core-collapse or thermonuclear explosion, or to discern between a non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical parameters of individual events and connections to possible progenitor stars make this a rapidly evolving topic that continues to challenge paradigms of stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3 fig

    Role of crystal orientation in the dynamic strength of magnesium alloy AZ31B

    Get PDF
    The effect of grain orientation distribution on the dynamic strength of highly textured magnesium alloy AZ31B has been studied in a series of plate-impact experiments. Specimens with thicknesses between 0.45 mm and 2 mm were cut parallel and perpendicular to the material extrusion direction and shock loaded to impact stresses between 1.4 GPa and 3.4 GPa. The dynamic strength is found to be highly dependent on the loading direction, with loading along the extrusion direction exhibiting significantly higher Hugoniot elastic limits than the transverse direction, including a much slower precursor decay rate. Application of an orientation-based analysis framework shows that the yield point of the polycrystalline material can be predicted reasonably well from its grain orientation distribution, predicated upon the use of dynamic critical resolved shear stress values from single-crystal data modified by a fitted strengthening factor. It is shown that the strong dependence on loading orientation in Mg AZ31 is caused by the relative differences in slip system activity and the slip anisotropies inherent to the hexagonal close packed crystal structure
    corecore