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A description is given of recent progress in the understanding of mechanisms in fluid-body interactions where the motion of a
body and the motion of the surrounding fluid affect each other substantially. The mathematical modelling of such unsteady in-
teractions is for internal channel and external near-wall flows in two spatial dimensions and time. The emphasis throughout is
on analytical developments with accompanying reduced computation. The successive aspects studied here are interactions and
impacts in inviscid flows, skimming and sinking, the lift-off, fly-away or bouncing of a body, and viscous effects including espe-
cially the interplay between viscous and inviscid contributions. The main findings are concerned with physical and mechanical
insights into impact times, lift-off criteria, the borders between impact and fly-away, the principal parameters and their ranges
and the influences from body shape and mass.

Fluid-body interactions, Skimming, Impacts, Analysis

Citation: F. T Smith, E. M Jolley, and R. A Palmer, On modelling fluid/body interactions, impacts and lift-offs, Acta Mech. Sin. 39, 323019 (2023),
https://doi.org/10.1007/s10409-023-23019-x

1. Introduction

This contribution is essentially a review on recent progress
in the understanding of dynamic fluid-body interactions. A
dynamic fluid-body interaction involves the unsteady motion
of a solid body (particle, object) that is freely moving in a
surrounding fluid and affecting the fluid flow substantially,
which thereby affects the body motion substantially and pro-
duces two-way interplay.

The scenarios of practical and scientific concern have an
incident unidirectional or almost unidirectional fluid flow
over a solid wall but with a free finite two-dimensional or
three-dimensional body located initially above the wall such
that part of the oncoming fluid travels through the gap be-
tween the underneath of the body and the wall. This yields
an unsteady two- or three-dimensional interaction. The con-
cern in this contribution will be almost entirely with the two-
dimensional case as a basis for increasing understanding.
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Moreover, the solid wall mentioned above may be the lower
wall of a channel or it may be situated in an external flow;
both setups will be considered in the review.

The focus in the present article is specifically on analyti-
cal developments that are described in the stream of papers
[1-22]. These are mostly on interactions arising in two spa-
tial dimensions (say x, y) and time t. A very recent devel-
opment is in Ref. [23] which is concerned with three spatial
dimensions (thus x, y, z, t). The above studies examine two-
dimensional (2D) dynamic fluid-body interactions in bound-
ary layers of nonzero shear flow, e.g., Refs. [7,14-16,20,21],
in uniform near-wall flow, e.g., Refs. [4, 11, 22] and in chan-
nel flows, e.g., Refs. [1, 6, 11], with the typical flow rates
of interest being high in relative terms: in other words the
representative Reynolds number is large. The flow pressure
on the body surfaces then provides the major force from the
fluid dynamics and this acts to continuously move (accel-
erate or decelerate) the body and rotate it, therefore alter-
ing the fluid dynamics itself and so continuing the two-way
interplay.
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In the background are the main motivations which con-
cern practical applications for example to: the safety of land,
sea and air vehicles when impacted upon by ice particles,
droplets or debris; the travel of objects, drugs or thrombi in
human arteries and lungs; the motion of dust, dirt and sand
on Earth and other planets; and the travel of grains such as
rice down chutes in food-sorting machines. This is in ad-
dition to the scientific and technological curiosity and chal-
lenge of the subject. Also in the background are many other
interesting papers most of which are on direct numerical sim-
ulations and experiments within the large area of fluid-body
interactions. These address boundary layers [24-29], chan-
nel flows [30, 31] and include predictions for flow transition
[24-26, 28, 31] and turbulent motion [27, 29, 30]. There are
also analyses on flow at relatively low flow rates.

Our prime concern is with phenomena occurring at high
Reynolds numbers and involving dynamic fluid-body interac-
tions for thin or slender fluid layers and bodies. The phenom-
ena to be considered are either, on the one hand, for inviscid
or quasi-inviscid fluids or, on the other, for viscous-inviscid
configurations. The work to be described uses mathemati-
cal modelling on a rational basis typically leading to reduced
systems of equations; this is coupled with analysis for exam-
ple in the form of matched asymptotic expansions to account
for the effects of high Reynolds number, slender bodies and
upstream or downstream influence, and allied with numeri-
cal studies whenever necessary and experimental or observa-
tional findings wherever possible. The work here also con-
centrates on properties for a single thin body although the
original study [1] allowed for many bodies in an aligned for-
mation, while a very recent extension [32] is to two or more
bodies in a non-aligned setup. Channel flow, boundary layer
flow, skimming, sinking, lift-off, rebounds and combined vis-
cous and inviscid effects are to be described.

The plan of the paper is as follows. Section 2 presents
the fundamental interactive reasoning and equations of inter-
est. Section 3 then addresses inviscid fluid-body interaction
in channel flows and in external flows, including descriptions
of various types of impact between the body and the wall or
boundary. Skimming and sinking are considered in Sect. 4,
while features of lift-off, fly-away and bouncing are consid-
ered in Sect. 5. Section 6 describes the influences of viscous
effects with specific interest in viscous-inviscid interplay and
flow separation, followed by Sect. 7 which provides further
discussion and conclusion.

2. Modelling and formulation

In view of the background and motivations described in the
introduction, we model here a dynamic fluid/body interac-

tion for a single body of uniform density ρDB, mass MD

and moment of inertia ID in the presence of an oncoming
flow of fluid of density ρDF with typical velocity uD in the
xD horizontal direction. We let yD measure distances in
the vertical direction. See Fig. 1. The fluid is assumed to
be incompressible and its flow to be laminar, the body is
rigid but free to move, and spatially the fluid/body inter-
action is 2D. The working herein is with Cartesian coordi-
nates (xD, yD) = LD(x, ϵy), corresponding velocity compo-
nents uD(u, ϵv), pressure ρDFu2

D p and time LDu−1
D t, where LD

is for example the typical length of the body in the horizontal
direction while ϵ denotes the typical ratio “vertical (lateral)
distance”/“horizontal (streamwise) distance”, or angle, of the
interaction and of the body’s vertical and horizontal dimen-
sions.

Our eventual interest is mostly in small ϵ, associated with
thin or slender bodies in thin-layer flows. If however ϵ is
treated as being of order unity then the non-dimensional
Navier-Stokes equations apply

∂u
∂t
+ (u · ∇)u = −∇p + Re−1∇2u, (1)

coupled with the continuity equation ∇·u = ux+vy = 0. Here
Re = uDLD/νD is the Reynolds number where νD is the kine-
matic viscosity of the fluid. In many applications Re is large
and so subsets of Eq. (1) become important. One is the Eu-
ler system in which the diffusion effect becomes negligible,
leaving the inviscid form:

∂u
∂t
+ (u · ∇)u = −∇p, (2)

provided the flow is separation-free. A third system is that
of the boundary layer equations which hold for small ϵ, for-
mally when ϵ = Re−1/2, giving the horizontal momentum

a

b

Figure 1 Interaction between fluid flow and a freely moving body a in a
channel, b in external flow, sketched (not to scale) with the body travelling
upstream or downstream relative to the wall(s). The typical flow velocity is
uD and the body length is LD.
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balance:

ut + uux + vuy = −px(x, t) + uyy, (3)

whereas the y-momentum balance establishes that the pres-
sure p(x, t) must be independent of y. The fourth system of
interest is the inviscid version, in which

ut + uux + vuy = −px(x, t), (4)

again for values of ϵ that are small. Equations (1)-(4) de-
scribe the fluid-flow contributions to the overall interaction
or in some cases describe subsets of the flow, for example
near the leading edge of a body. Throughout, the continuity
equation remains as stated earlier.

Complementing the above equations of fluid flow are the
body-motion equations based on Newton’s laws of motion,
specifically the product of mass and acceleration must bal-
ance the relevant forces acting on a body. If (x, ϵy) =
(Xc, Yc)(t) denotes the moving centre of mass of the body and
θc(t) its angle of rotation then in general:

M
d2Xc

dt2 = Fx, M
d2Yc

dt2 = Fy, I
d2θc

dt2 = N,

where Fx and Fy are the integrated forces produced by the
fluid motion supplemented by gravity and N is the inte-
grated torque or moment. Here M and I denote the non-
dimensionalised mass and moment of inertia respectively.
When ϵ is small these body-motion equations of linear and
angular momentum simplify in view of the smallness of θc(t),
yielding the leading-order relations:

d2Xc

dt2 = 0, (5a)

M
d2h
dt2 =

∫ 1

0
(p1(x, t) − p2(x, t)) dx − Mĝ, (5b)

I
d2θ

dt2 =

∫ 1

0
(x −C)(p1(x, t) − p2(x, t)) dx, (5c)

with θc(t) = ϵθ(t), Yc = ϵh(t). The relation (5a), which stems
from the property that the integrated horizontal force is com-
paratively small, implies that Xc = At +C where A and C are
constants but in addition the coordinate frame taken is fixed
horizontally with that of the body, thus leading to A = 0 as
well as making the integration ranges in Eqs. (5b) and (5c)
be (0, 1) and leaving the centre of mass at x = C where
0 < C < 1. The pressure forces acting on the body surfaces
as in Fig. 1 are the major contributions from the fluid flow,
with p1, p2 representing in turn the pressures on the lower
and upper surfaces of the body.

The boundary and initial conditions on the interactive sys-
tem also play a very significant role which is described in the
following sections.

3. Inviscid model: interactions and impacts

Here we consider internal flow past a free body within
straight channel walls in Sect. 3.1 below followed by exter-
nal flows in Sect. 3.2. The study includes impacts onto a solid
wall. Account is taken of the possible largeness of the body
density ρDB relative to the fluid density ρDF especially when
the fluid is air for example.

3.1 Impacts in channel flows

The channel-flow scenario 1) [1, 3, 11] is considered in some
detail below: see also Fig. 1a. It concerns just a single body,
together with the parameter ϵ being small and the pressures
p1, p2 being comparable. Equation (4) holds in the two thin
regions above and below the body.

The specific configuration addressed here has a uniform
oncoming flow u = u0(y) = 1 (plug flow) in the channel
at x = 0−. The boundary conditions on the system (4) are
to ensure tangential flow at the channel walls, impose the
kinematic conditions at the body surfaces, set a Bernoulli re-
quirement across the Euler zone at the leading edge of the
body and set a Kutta condition at the trailing edge. Thus the
conditions are, respectively,

v = 0 at the walls y = 0, 1, (6a)

v = ft + u fx at y = f (x, t), with f = f1 (lower surface)

and f = f2 (upper), (6b)

p +
1
2

u2 =
1
2

at x = 0+, (6c)

p = 0 at x = 1. (6d)

The moving surfaces of the body are given by

f (x, t) = F(x) + h(t) + (x −C)θ(t), (7)

with F(x) = F1(x) and F = F2(x) denoting the given fixed
shapes of the underbody and overbody respectively in the ab-
sence of motion. As a result of the incident plug flow and the
quasi-steady nature of the Euler zone where x is small and
O(ϵ) the conservation property (6c) holds. Additionally the
vorticity is zero virtually everywhere to leading order and so
it follows that u = u(x, t) is independent of y. Hence the
kinematic requirement (6b) combined with the tangential re-
quirement (6a) leads to the relation:

Ht + (Hu)x = 0, (8a)

1) Q. Liu, Interactions, Impacts and Rebounds of Fluid and Body Motions in Channels, Dissertation for Doctoral Degree, UCL (University College London),
in preparation.



F. T Smith, et al. Acta Mech. Sin., Vol. 39, 323019 (2023) 323019-4

where the gap widths H are given by H = H1 = f1(x, t) in the
lower thin layer and H = H2 = 1− f2(x, t) in the upper layer;
meanwhile Eq. (4) reduces to the form:

ut + uux = −px. (8b)

Equations (8a)-(8b), which are the so-called shallow water
equations, hold in each of the thin layers below and above
the moving body. A final constraint is that of conservation of
total mass flux, requiring

u1H1 + u2H2 = 1 at x = 1. (9)

This is inferred from an integral of Eq. (8a). The initial state
of the system typically has h, h′, θ, θ′ prescribed together with
initial values u(x, 0). The fluid-body interaction is completed
by the linkage with the body-movement equations (5b)-(5c).

The above formulation includes the localised upstream in-
fluence due to the Euler zone which is generated close to
the leading edge. In the zone Eq. (2) applies but with the
unsteady terms being negligible because of the shortened x
scale locally and hence the Bernoulli conservation law (6c)
is obtained, as discussed. There is no further upstream influ-
ence ahead of the Euler zone in the present small-ϵ model.

An instability analysis is of interest here. Given that an
exact solution of the interaction system for the case of an
aligned flat plate in the middle of the channel has uniform
flow with zero pressure variation, we consider small pertur-
bations of the form:

(H, u, p) =
(

1
2
, 1, 0

)
+ δ

(
H(1), u(1), p(1)

)
+ . . . , (10)

with δ small. Substitution into Eqs. (8a)-(8b) leaves at lead-
ing order the linearised equations:

H(1)
t + H(1)

x + u(1)
x = 0, (11a)

u(1)
t + u(1)

x = −p(1)
x , (11b)

subject to boundary conditions derived from linearization of
Eqs. (5b), (5c), (6c), (6d), and (9). When body thickness is
negligible the time-dependence can be shown to be exponen-
tial, proportional to exp(Qt) say, with the eigenvalue constant
Q to be found. The eigenvalue equation obtained is

(3M + 1)
(
I +

1
180

)
Q3 +

(
3MI +

M
10
+ 4I +

1
20

)
Q2

−
(

M
2
− 6I − 1

5

)
Q +

(
1
3
− M

)
= 0, (12)

in addition to the presence of two zero-Q roots which are as-
sociated with uniform translation. The left-hand side of Eq.
(12) establishes that for any M > 1/3 there is a single eigen-
value with a positive real part. Eigenvalues are plotted in

Fig. 2. The fact that the typical eigenvalue is O(1) indicates
the modelled interaction exhibits instability but only over the
time scale of the complete interaction, not over shorter or
longer time scales.

A typical computational solution of the nonlinear system
is presented in Fig. 3, showing the temporal evolution of the
leading- and trailing-edge heights yLE, yTE respectively given
by h−Cθ, h+(1−C)θ. This is for a flat-plate body with centre
of mass at the midpoint. Comparisons [1] between previous
computational results and the prediction (12) prove affirma-
tive for low-amplitude behaviour. At higher amplitudes an
impact (a crash or clash) between the body and one of the
walls, as indicated in Fig. 3, is a possible outcome.
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Figure 2 Plots of the eigenvalues given by Eq. (12) versus M for several I
values.

Figure 3 A sample solution for the full system (6a)-(9) coupled with
Eqs. (5b) and (5c) in a channel. The body is a flat plate with F(x) zero,
C = 1/2, (M, I) = (2, 0.4), initial (h, h′, θ, θ′) = (0.5, 0, 0,−0.1); shown are
the leading- and trailing-edge heights as functions of time t.
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Concerning such impacts, an impact at a sharp leading
edge of a body is investigated analytically by Ref. [1], oc-
curring at a finite time t = t−0 , say. It is shown that the expan-
sion:

h(t) = h10 + (t0 − t)h11 + δ(t)h12 + . . . , (13a)

where h10, h11, . . . are constants and the scale factor δ is given
by

δ(t) = (t0 − t)/ ln(t0 − t) + . . . , (13b)

describes an impact on the lower wall, with an expansion for
θ(t) similar to that in Eq. (13a) but such that θ10 = 2h10 be-
cause of closure of the lower gap at the leading edge. The
sensitive logarithmic dependence present in Eqs. (13a) and
(13b) is notable.

On the other hand, impact at a mid-body position is ad-
dressed in Ref. [3] for a smooth non-flat surface: here the
expansion takes the form:

h(t) = h10 + (t0 − t)h11 + (t0 − t)3/2h12 + . . . , (14a)

with a similar expression holding for θ(t). Locally near the
impact position x = x0 at t = t0 the fluid velocity and pressure
assume the forms:

u = (t0 − t)−
1
2 U1(ξ) + . . . , (14b)

p = (t0 − t)−1P1(ξ) + . . . , (14c)

where ξ = (x − x0)/(t0 − t)
1
2 is O(1). A non-local expansion

both upstream and downstream of the impact position is also
significant here, yielding

u = O(1) + O
[
(t0 − t)

1
2

]
, (14d)

p = O
[
(t0 − t)−

1
2

]
, (14e)

subject to matching with the solution of Eqs. (14b) and (14c).
The body motion then points to a subtle balance involving the
lift and moment due to the pressures active in both the local
and the non-local areas.

3.2 Impacts in external flows

The study of impacts in external flows as in Fig. 1b consti-
tutes more recent work [21, 22]. It is similar to the work
which has been described above but it accommodates three
extra or novel factors. These are: an allowance for the inci-
dent flow profile u0(y) being non-uniform, such as for inter-
action taking place within an oncoming boundary layer; the
property that the mass and moment of inertia values M and I
are often large for many realistic bodies; and the feature that

whereas the underbody pressure p1 is typically of order unity
the overbody pressure variation p2 is small because of the
necessary match with the external flow outside the boundary
layer.

Here there is body-air-wall interaction in which the body
travels through an air boundary layer on top of a wall 2) [21].
In some detail we have the following. The governing equa-
tions are Eq. (4) coupled with Eqs. (5b) and (5c) but with
p2 neglected, and similarly the boundary conditions remain
as in Eqs. (6a), (6b), (6d), and (7) provided the upper sur-
face, overbody effect and upper wall conditions are omit-
ted, while Eq. (6c) is to be described shortly. Only the flow
u = u1, v = v1, p = p1 in the gap between the underbody and
the wall interacts with the body motion since the flow above
the body is given by u2 = 1, v2 = p2 = 0 in essence. Also
taking into account the typical large size of M and I leads to
a time scale such that the operator ∂/∂t becomes negligible
in the fluid dynamics, leaving the gap equations:

ux + vy = 0, (15a)

uux + vuy = −px, (15b)

combined with Eqs. (5b) and (5c). Finally here, for a general
incident profile u0(y) the relation (6c) between pre-Euler and
post-Euler flows has to be replaced by

1
2

u0(Y(0−))2 =
1
2

u(0+, Y(0+), t)2 + p(0+, t)

=
1
2

u(x, Y(x), t)2 + p(x, t), (16)

on a streamline Y = Y(x) say.
A sample solution for a smooth convex underbody is pre-

sented in Fig. 4 and it indicates that a “crash” can take place
at a finite time t = t−0 . The crash or impact is centred on
some position x = x0 with 0 < x0 < 1. The behaviour as t
tends to t−0 takes the following form. Near x = x0 we have
the h-expansion:

h(t) = h10 + (t0 − t)4/5h12 + . . . , (17)

together with a similar expansion for θ and for the gap width
where x−x0 is of order (t0−t)2/5 locally. This is supplemented
by a non-local response which holds for x−x0 values of order
unity, i.e., for the remainder of the domain of interest.

A subsequent stage then arises over a shortened time scale
during which the ∂/∂t operator comes back into play signif-
icantly in the fluid flow, thus reinstating the governing equa-
tion (4). This yields the eventual final impact of the body
onto the wall being essentially the same as that found in Eqs.
(14a)-(14e) [3]. Discussion of the existence of other out-
comes apart from the above impacts is deferred to Sect. 5
below.

2) E. Jolley, Fluid-Body Interactions, Dissertation for Doctoral Degree, UCL (University College London), in preparation.
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Figure 4 A solution for the reduced system where Eqs. (15a), (15b), and (16) apply.

We should remark in addition that ongoing work develop-
ing from the above studies includes investigations of external
flow with air motion over a water layer on top of a solid wall.
The extra feature of a water layer leads to body-air-water-
wall interaction 3). The latter aspect also brings us to the next
section which is concerned with skimming work and related
phenomena.

4. Skimming and sinking

The typical skimming of a body in practice occurs when a
thin body enters water obliquely, with all the angles involved
in the liquid flow, the body and the motion of the body be-
ing small. Air may be trapped in this impact process, similar
to air cushioning, but usually a mathematical model of skim-
ming treats the air as a void having negligible dynamic influ-
ence on the water-body interaction. See Fig. 5 for a defining
sketch.

The approach of Ref. [2] which treats air as a void is taken
here. The model holds for shallow water and is in essence
the same as in the general approach of Sect. 2 with, how-
ever, the upper pressure p2 set to zero (atmospheric) and the
underbody pressure p1 likewise zero except in regions that
are wetted or pressurized. The extent of the wetted region
varies with time. Thus if the trailing edge of the body en-
ters the water first then the downstream edge of the wetted
region is fixed at x = 1 whereas the leading edge or moving
contact point of the wetted region is at an unknown location
x = x1(t) where −1 < x1(t) < 1 during the skim. Upstream of
the contact point the liquid flow has velocity u and height H
both identically equal to unity, being undisturbed at leading
order. The leading edge of the body itself is fixed at x = −1;
if x1(t)+ 1 ever becomes zero or negative then flooding takes
place over the top surface of the body and this can lead even-

tually to sinking.
The governing equation (4) applies in the water but under

certain assumptions of slenderness a linearization also holds
which leads effectively to a reduced system akin to that of
Eqs. (11a) and (11b). The body-motion equations (5b) and
(5c) with zero p2 and negligible gravity effects act to cou-
ple the liquid and body motions together fully, albeit with the
range of integration being

(x1(t), 1) instead of (0, 1). (18)

This is in view of the moving contact point and the wetted re-
gion. The boundary conditions of concern apply in the wetted
region, namely

p = 0 at x = 1, (19)

p + (1 − x′1(t))u = 0 at x = x1(t), (20)

u + (1 − x′1(t))H = 0 at x = x1(t), (21)

H(x, t) = F(x) + h(t) + (x −C)θ(t). (22)

For convenience the superscripts “(1)” of Eqs. (11a) and
(11b) have been dropped here and p is written for p1. The
Kutta condition (19) is familiar from the preceding modelling
while the underbody-shape relation (22) essentially repeats
Eq. (7), although linearized as described above. The condi-
tions (20) and (21) stem from the small-scale Euler region
surrounding the moving contact point as expected but with
allowance for the free surface development locally.

Figure 5 Sketch of a skimming configuration.

3) E. Jolley, and F. T. Smith, Body-air-water interactions and impacts, J. Fluid Mech. in preparation.
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Various studies have been performed on the above skim-
ming system. Asymptotic analysis is helpful for small times
[2, 18] where the wetted region is initially tiny and for so-
called exit time where the body leaves the water and be-
gins its complete rebound into the air. The exit-time analysis
[2, 18] is found to be almost identical with that in Eqs. (13a)
and (13b). In Fig. 6 a sample solution is shown in which
the centre of mass position C is zero. Related interesting
properties such as mass and curvature effects or mid-chord
impacts of smooth skimming bodies are addressed in Refs.
[5, 8, 17-19].

Figure 6a shows progression of the body during the skim-
ming motion as described by three parameters: Y − Y0, the
height of the body’s centre; θ−θ0, the body’s rotation; and x1

the leading-contact position of the water layer along the body
(indicating the extent of body wetting by [x0, x1]). From
the x1 curves, a body’s descent (dx/dx < 0) and ascent
(dx/dx > 0) through the water layer can be seen. While
x1 decreases, the pressure (and thus force) under the body in-
creases. Eventually, this force is sufficient to cause the body
to rebound (approximately t = 2.9) and ascend back through
the water layer to exit (when x1 = x0).

Throughout this motion, the body’s height initially de-
creases. Although it slightly increases after rebound, it leaves
the water at a lower height than it entered due to the deforma-
tion of the water. Also, the body rotates in an anti-clockwise
manner, decreasing its angle of inclination to the water. Com-
paring to a flat body (solid lines), a curved body (dashed
lines) experiences diminished body wetting (i.e., compara-
tively larger x1 values throughout), maintains a slightly lower
height after rebound and increased rotation.

Regarding Fig. 6b, the heights of the free-surface under the
body and in the wake are shown for a flat body and curved

body at different points in the skimming motion. Compar-
atively, the magnitude of the curved body’s wake is slightly
reduced at each point in time (range of h values).

Cases of sinking of the body after its impact into water
are considered in Ref. [9]. The difference from the previ-
ous cases of successful skimming is that the contact point
reaches the bodys leading edge x = −1 at a finite time, fol-
lowing which a thin layer of water spreads forward along the
bodys top surface. This is affected by gravity forces that in-
fluence the upper pressure, making p2 become nonzero. If,
in consequence of the forward spread on top, the body even-
tually sinks then its underbody surface can impact upon the
wall (the substrate), again within a finite time. The nature of
the impact process on the wall is similar to that considered in
Eqs. (13a), (13b), (14a)-(14e) for flat or curved underbodies.

Further work on skimming and sinking is described in a
recent paper 3): here air effects and fully nonlinear flow are
admitted into the modelling.

5. Lift-off, fly-away or bouncing of a body

There are several forms of lift-off which are of interest. The
one on which we focus here is that of Ref. [22] as sketched
in Fig. 7 and it has a thin body initially at rest on a flat hori-
zontal fixed solid surface or wall given by y = 0. The un-
derbody is assumed to be smoothly curved, being convex
downwards, and is in touch with the wall at a single con-
tact point x = C which is the position of the centre of mass
of the body. So in the fluid-filled gap the initial gap width
H = H0(x) = F(x) + h0 + (x −C)θ0 say satisfies

H0 =
dH0

dx
= 0 at x = C at time t = 0−. (23)

a b

Figure 6 A sample solution showing skimming properties. a Comparison of the skimming progression of different body shapes (leading edge position x1,
vertical centre of mass position Y − Y0 and angle of incidence θ − θ0). b Comparison of the free-surface height under the body and in the wake for different
body shapes at several points in time.
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Figure 7 The setup for a body lifting off from a wall.

If the contact point is not at x = C then the body is initially
rocking, a case that is considered in Refs. [11, 22] whereas
we will address the initially stationary case (23).

Lift-off is induced when the surrounding fluid is set into
motion impulsively at time t = 0+ by means of a free oncom-
ing uniform stream u = 1 parallel to the wall at atmospheric
pressure p of zero. Part of the stream enters the slender gap
between the wall and the underbody and thereby creates a
pressure force p(x, t) = p1(x, t) typically of order unity which
is sufficient to lift the body off the wall. In contrast, the pres-
sure variation p2(x, t) on top of the body is only o(1) because
of the linearized flow features over the slender body. Given
the zero incident vorticity the governing equations in the gap
flow are therefore Eqs. (8a) and (8b), derived from Eq. (4)
along with the continuity equation, and these are combined
with the body-motion equations (5b) and (5c), with p2 justi-
fiably taken as zero to leading order throughout. The leading
and trailing edges of the body have positions x = 0, 1 respec-
tively and so the boundary conditions (6c) and (6d) apply at
those edges together with a moving-shape relation which is
Eq. (22) in essence.

Analysis for small positive times is helpful in checking
whether lift-off can indeed occur, or not, and in highlighting
the physical scales involved as well as guiding any numer-
ical work on the full problem. It is interesting to examine
the details. For most x of O(1), the solution expansion for
0 < t ≪ 1 must take the form:

gap width H(x, t) = H0(x) + t2H2(x) + . . . , (24a)

velocity u(x, t) = tu1(x) + . . . , (24b)

pressure p(x, t) = p0(x) + . . . , (24c)

owing to the balances in the governing equations. Thus Eqs.
(8a) and (8b) are in balance at O(t) and O(1) in turn and the
O(1) pressure variation then provokes lift and moment con-
tributions of O(1) on the right-hand sides of Eqs. (5b) and
(5c), indicating O(1) accelerations of the underbody which
are in keeping with the O(t2) contribution in Eq. (24a). Here
the expressions for height h(t) and angle θ(t) are similar to
Eq. (24a). The terms of O(t2) in the moving gap shape (22),
of O(t) in the relation (8a) and of O(1) in the momentum

equation (8b) now yield the relations:

H2(x) = h2 + (x −C)θ2, (25a)

2H2(x) + (H0(x)u1(x))′ = 0, (25b)

u1(x) = −p′0(x), (25c)

respectively. It follows from Eqs. (25a) and (25c) and from
the leading-edge and trailing-edge constraints that the solu-
tions for the velocity perturbation and the pressure at early
times are

u1(x) = [−2h2(x −C) − θ2(x −C)2 + c1]/H0(x), (26a)

p0(x) = −
∫ x

0
u1(s) ds +

1
2
, for 0 < x < C, (26b)

p0(x) = −
∫ x

1
u1(s) ds, for C < x < 1, (26c)

effectively in terms of the unknown constants h2 and θ2; the
constant c1 is zero for the matching below. A closed problem
for h2 and θ2 is obtained by virtue of the body movement,
giving

2Mh2 =

∫ 1

0
p0dx − Mĝ, (27a)

2Iθ2 =
∫ 1

0
(x −C)p0dx, (27b)

from Eqs. (5b) and (5c), with the right-hand sides in Eqs.
(27a) and (27b) being linear combinations of h2 and θ2 be-
cause of Eqs. (26a)-(26c). It can be justified a posteriori
that the scaled lift and moment are dominated by the outer-
solution contributions as in Eqs. (27a) and (27b): the singu-
larity in the velocity (26a) and the corresponding logarithmic
responses in the pressure in Eqs. (26b) and (26c) indicate that
the above is indeed an outer expansion valid everywhere ex-
cept very near x = C. The inner expansion has

(H, u, p) = (O(t2),O(1), 2h2κ
−1 ln(t) + O(1)), (28)

where ξ = (x−C)/t is of order unity and the positive constant
κ is proportional to the local body curvature. The inner solu-
tion smooths out the singularity and logarithmic effect of the
outer solution [22] and generates a logarithmically high max-
imum initial pressure magnitude as indicated in Eq. (28). The
criterion for lift-off is examined in detail in Ref. [22] based
on the lift response in Eq. (27a).

Large-time analysis is concerned with the possibility of
the body flying away to large heights. Here, broadly speak-
ing, the Ht and ut terms in Eqs. (8a) and (8b) diminish when
t ≫ 1 and hence we find the quasi-steady Bernoulli relation
holding for p. Given that, the Mhtt equation then leads to the
requirement Mĝ < 1/2. In more detail, the solution expands
in the form:

(h, θ) = t2(h2, θ2) + . . . , (u, p) = (u0, p0) + . . . . (29)
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So at leading order the gap shape becomes simply H ∼
t2[h2 + (x − C)θ2] whereas the kinematic equation implies
that u0 = c/[h2 + (x − C)θ2] and the momentum balance re-
quires p0 = (1 − u2

0)/2. Mass multiplied by acceleration then
yields the balance:

2Mh2 =
1
2

∫ 1

0
(1 − u2

0)dx − Mĝ, (30a)

and the angular momentum requirement is

2Iθ2 =
1
2

∫ 1

0
(x −C)(1 − u2

0)dx. (30b)

Combining the above balances gives two nonlinear equations
for the unknown constants h2 and θ2. The criterion for fly-
away stems from the need for h2 to be positive, giving

Mĝ <
1
2
, (31)

which follows from Eq. (30a). Comparisons with numerical
solutions of the full system and corresponding discussions
are presented in Ref. [22]. It is interesting that, unlike the
small-time case, the present large-time behaviour shows the
influence of the body shape becoming negligible when fly-
away occurs.

Features of fly-away in other contexts are described in
more recent works. These address the influence of nonzero
incident vorticity in both inviscid and viscous scenarios 2)

[20, 21]. An alternative outcome is so-called bouncing [21]
as illustrated in Fig. 8, where, repeatedly, the body nearly im-
pacts on the wall but then flies to large heights before once
more returning to nearly hit the wall and so on. Repeated
excursions into air between skimming events on water are
studied in Ref. [5].

6. Viscous effects

Most of the description so far in Sects. 3-5 has been for an
assumed inviscid fluid. The assumption of relatively insignif-
icant viscous effects is broadly valid provided no large-scale
separation takes place [1, 6, 7].

Significant viscous effects in the area were first studied by
Ref. [6] concerning a body within channel flow. The body
considered is of length comparable with the channel width
and is initially in the so-called core of the flow, thus lying
outside the two slender viscous layers near the channel walls.
In essence the governing equations (2) and (3) apply now in
the core and the wall layers respectively, along with the pres-
sure difference p1− p2, and two axial length scales come into
operation. Over the O(1) length scale of the body the core is
described by the expansion:

u = u0(y) + ET + Re−3/7u1(x, y,T ) + . . . , (32)

which leads to a linearised version of Eq. (2). Here u0(y) is
typically the parabolic velocity profile of fully developed on-
coming flow and time t = γ1T with γ1 being large, while
ET denotes passive extra terms produced by matching over
a longer length scale. The core flow is combined with the
body-motion equations which are essentially Eqs. (5b) and
(5c), involving lift and moment as may be expected, but there
is an issue of indeterminacy within the O(1) length scale. The
indeterminacy arises because the far-field behaviour of the
velocity perturbation is found to be given by

u1 ∼ (a± + b±x)u′0(y) as x tends to ±∞. (33)

The constants a± and b± remain undetermined by the proper-
ties over the O(1) length scale. The lift which is found to be
proportional to the difference b+ − b− is also affected.

The issue is resolved over the longer length scale defined

B
o
d
y
 a

n
g
le

Figure 8 Bouncing indicated by a solution of the system in which quasi-steady flow holds.
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by

x = Re1/7X, (34)

where the core flow solution now has the expansion:

u = u0(y) + O(Re−2/7), (35a)

p = O(Re−4/7), (35b)

while the solutions in the thin viscous-inviscid layers at the
lower (n = 1) and upper (n = 2) channel walls take the form

u = Re−2/7U(X, Y,T ) + . . . , (36a)

p = Re−4/7Pn(X,T ) + . . . , (36b)

respectively. Here y − 1 or y is scaled with Re−2/7 and so
Eqs. (36a) and (36b) imply the boundary layer equation (3)
holds in effect. The boundary and matching conditions are
described in Ref. [6]. A notable effect stems from the rela-
tion:

P2 − P1 is proportional to AXX , (37)

for the difference between the upper wall pressure and the
lower wall pressure, with A(X, T ) being the unknown dis-
placement in the core. This relation in tandem with the
viscous-inviscid responses in the two wall layers yields up-
stream influence and downstream influence over the length
scale (34) and accounts for the growths (33), which are valid
at small values of X, by smoothing them out over the scale
(34). A striking result in the linear range is the finding that

b− = −µ̄b+. (38)

The constant µ̄ = cos(π/7), which is approximately
0.900969, gives the ratio of the streamline slopes for the re-
sponse (33), over the O(1) length scale of the body. Figure
9 shows the pressures P1 and P2 and the displacements D1

and D2 induced in the two wall layers of the channel over the
longer length scale of Eq. (34); the discontinuities in slopes
at the origin over this scale are clear.

A boundary layer setup is addressed in Ref. [7], for which
p2 is zero in effect. The viscous-inviscid boundary layer sys-
tem is coupled with a displacement which is influenced by
the movement of the underbody and hence interacts with Eqs.
(5b) and (5c) through the unknown pressure. An additive
contribution from the leading edge area is discussed in Ref.
[20]. Stabilising properties are also investigated for cases
when there is surface flexibility, when the centre of mass is
positioned ahead of the midway location or when the body is
moving substantially in the streamwise direction.

Viscous-inviscid interplay for a body near a solid surface is
studied in Refs. [15,16] with application to boundary layer or

channel flow over relatively short streamwise or axial length
scales. See also Ref. [14]. These scales are much less than
triple-deck lengths for the boundary layer setting and much
less than Eq. (34) for the channel setting. The oncoming
near-wall flow is a uniform shear flow supplemented by a
uniform flow on account of the relative movement of the
body upstream or downstream. Jump conditions akin to that
in Eq. (6c) are induced. In the overall fluid-body interplay
the unknown scaled pressures p1 and p2 are comparable; the
viscous-inviscid governing equation (3) applies both in the
underbody/wall gap and in the region above the overbody and
the body moves according to Eqs. (5b) and (5c). An impact
at the leading edge is found to occur within a finite time t = t0
in Ref. [16] for the case of a straight plate. Three subregions
then form the asymptotic response at t = t−0 such that nearest
the leading edge we have

(u, p) = O(1), y = O(t0 − t), (39)

where x is of order (t0 − t)2, whereas further downstream
where x becomes of order (t0 − t) the expansion is

u = O(1), p = O(t0 − t)−1, y = O(t0 − t), (40)

and the final subregion where x is of order unity exhibits the
form

(u, p) = O(1), y = O(1). (41)

Here Eqs. (39) and (41) leave nonlinear viscous-inviscid ef-
fects being important at impact in contrast with Eq. (40)
which leads to a linear response. The major contributions
to the lift and moment driving the body into the impact are
from the subregions where Eqs. (40) and (41) apply. Compar-
isons with the results of direct simulations of Eq. (1) prove to
be affirmative [15, 16]. Other body shapes such as elliptical
(see Fig. 10) are investigated in Ref. [?] along with the pos-
sibility of lift-off emerging via this type of viscous-inviscid
interplay.

Figure 9 Long-scale pressure and displacement in the channel wall layers
for the viscous-inviscid situation of Eqs. (32)-(38).
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Figure 10 A solution of the viscous-inviscid case in near-wall flow for an
elliptical body.

7. Further discussion and conclusion

Progress in understanding dynamic fluid/body interactions
and the range of mechanisms at play has been reviewed in
this article for the case of a single body involved in an un-
steady two-dimensional interaction. We have considered the
fundamental modelling together with interactions and im-
pacts in inviscid flows, skimming and sinking, the lift-off,
fly-away or bouncing of a body, while viscous effects stud-
ied have included the feedback between viscous and invis-
cid contributions. Another viscous effect which is notable
in passing occurs when a water droplet approaches a wall,
leading to a different form of viscous/inviscid feedback be-
tween quasi-inviscid water and viscous air motion in the
phenomenon of air cushioning, a phenomenon which has
attracted much analytical and simulation attention recently.
The present work on fluid-body interactions has highlighted
physical and mechanical insights in particular into impact
times, lift-off criteria, the evolution towards impact or to-
wards fly-away, the influences from body shape and mass for
example and the influence of the main parameters.

Other ongoing or recent works are also of interest. Our
attention has mostly been on analytical developments and
especially on interactions in the presence of relatively thin
or slender bodies with near-aligned surrounding fluid flow.
Studies of non-slender bodies are in recent work for inviscid-
fluid interactions; thus Ref. [10] addresses the scenario of
several circular bodies moving freely in an otherwise uni-
form stream, and Ref. [33] discusses the free movements of
an ellipse with aspect ratio of order unity. Inviscid fluid-body
interaction is described within a channel which has signifi-
cantly non-parallel walls 1), while in Ref. [34] the basics of
fluid-body interaction for a long near-wall body in channel
flow are addressed with active viscous-inviscid interplay be-

ing present. It seems obvious that there are many gaps to
be filled yet in terms of understanding mechanisms and their
application.

Certain clear challenges for the future are as follows. The
extension of understanding to many bodies in surrounding
flowing fluid would be of considerable value. This has been
begun in Refs. [10, 32]. Likewise extending the theory ra-
tionally to allow for rebounds would be desirable; a start is
being made 1). There is also a call for increased allowance
for flow separation, whether inviscid or viscous, during fluid-
body evolutions. Dynamic interactions involving time and
three spatial dimensions [23] are still in their infancy as re-
gards physical understanding and modelling. This list of
challenges is not an exhaustive one but is meant to indicate
potential areas of interest.

Author contributions Frank T Smith contributed to conceptualization,
formal analysis, funding acquisition, methodology, supervision, validation,
writing original draft, and writing review & editing. Ryan A Palmer and
Ellen M Jolley contributed to formal analysis, methodology, validation, vi-
sualization, writing original draft, and writing review & editing.

Acknowledgements We acknowledge gratefully helpful discussions with
colleagues Andrew Ellis, Samire Yazar, Qingsong Liu, T D Dang, Phil Wil-
son, Kevin Liu, Ted Johnson, Robert Bowles, Sergei Timoshin and with
staff at Aerotex UK, namely Colin Hatch, Ian Roberts, Richard Moser and
Roger Gent. Support from the Engineering and Physical Sciences Re-
search Council (Grants Nos. EP/R511638/1, GR/T11364/01, EP/G501831/1,
EP/H501665/1, and EP/K032208/1), University College London (two IAA
awards) and Aerotex UK is also acknowledged with gratitude. Thanks are
due to the Beijing International Center for Theoretical and Applied Mechan-
ics for their interest and invitation concerning this article.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution, and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the ar-
ticle’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory reg-
ulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

1 F. T. Smith, and A. S. Ellis, On interaction between falling bodies and
the surrounding fluid, Mathematika 56, 140 (2010).

2 P. D. Hicks, and F. T. Smith, Skimming impacts and rebounds on shal-
low liquid layers, Proc. R. Soc. A 467, 653 (2011).

3 F. T. Smith, and P. L. Wilson, Fluid-body interactions: clashing, skim-
ming, bouncing, Phil. Trans. R. Soc. A 369, 3007 (2011).

4 F. T. Smith, and P. L. Wilson, Body-rock or lift-off in flow, J. Fluid
Mech. 735, 91 (2013), arXiv: 1301.2365.

5 K. Liu, and F. T. Smith, Collisions, rebounds and skimming, Phil.
Trans. R. Soc. A 372, 20130351 (2014).

6 F. T. Smith, and E. R. Johnson, Movement of a finite body in channel
flow, Proc. R. Soc. A 472, 20160164 (2016).

7 F. T. Smith, Free motion of a body in a boundary layer or channel flow,
J. Fluid Mech. 813, 279 (2017).

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1112/S0025579309000473
https://doi.org/10.1098/rspa.2010.0303
https://doi.org/10.1098/rsta.2011.0092
https://doi.org/10.1017/jfm.2013.464
https://doi.org/10.1017/jfm.2013.464
https://arxiv.org/abs/1301.2365
https://doi.org/10.1098/rsta.2013.0351
https://doi.org/10.1098/rsta.2013.0351
https://doi.org/10.1098/rspa.2016.0164
https://doi.org/10.1017/jfm.2016.706


F. T Smith, et al. Acta Mech. Sin., Vol. 39, 323019 (2023) 323019-12

8 K. Liu, and F. T. Smith, A smoothly curved body skimming on shallow
water, J. Eng. Math. 128, 17 (2021).

9 F. T. Smith, and K. Liu, Flooding and sinking of an originally skim-
ming body, J. Eng. Math. 107, 37 (2017).

10 F. Smith, S. Balta, K. Liu, and E. R. Johnson, On dynamic interac-
tions between body motion and fluid motion, in: Mathematics Applied
to Engineering, Modelling, and Social Issues (Springer, Cham, 2019),
pp. 45-89.

11 S. Balta, On fluid-body and fluid-network interactions, Dissertation for
Doctoral Degree (University College London, London, 2017).

12 R. A. Palmer, I. Roberts, C. Hatch, R. Moser, and F. Smith, Non-
spherical particle trajectory modelling for ice crystal conditions, SAE
Technical Paper, 2019.

13 F. Smith, and R. Palmer, A freely moving body in a boundary layer:
Nonlinear separated-flow effects, Appl. Ocean Res. 85, 107 (2019).

14 R. A. Palmer, and F. T. Smith, When a small thin two-dimensional
body enters a viscous wall layer, Eur. J. Appl. Math. 31, 1002
(2020).

15 R. A. Palmer, and F. T. Smith, A body in nonlinear near-wall shear
flow: Numerical results for a flat plate, J. Fluid Mech. 915, A35 (2021).

16 R. A. Palmer, and F. T. Smith, A body in nonlinear near-wall shear
flow: Impacts, analysis and comparisons, J. Fluid Mech. 904, A32
(2020).

17 R. A. Palmer, and F. T. Smith, Skimming impacts and rebounds of
smoothly shaped bodies on shallow liquid layers, J. Eng. Math. 124,
41 (2020).

18 R. A. Palmer, and F. T. Smith, Skimming impact of a thin heavy body
on a shallow liquid layer, J. Fluid Mech. 940, A6 (2022).

19 R. A. Palmer, and F. T. Smith, The role of body shape and mass in
skimming on water, Proc. R. Soc. A. 479, 20220311 (2023).

20 E. M. Jolley, R. A. Palmer, and F. T. Smith, Particle movement in a
boundary layer, J. Eng. Math. 128, 6 (2021).

21 E. M. Jolley, and F. T. Smith, A heavy body translating in a boundary
layer: ‘Crash’, ‘fly away’ and ‘bouncing’ responses, J. Fluid Mech.
936, A37 (2022).

22 S. Balta, and F. T. Smith, Fluid flow lifting a body from a solid surface,

Proc. R. Soc. A 474, 20180286 (2018).
23 F. T. Smith, and K. Liu, Three-dimensional evolution of body and fluid

motion near a wall, Theor. Comput. Fluid Dyn. 36, 969 (2022).
24 G. Hall, On the mechanics of transition produced by particles passing

through an initially laminar boundary layer and the estimated effect
on the lfc performance of the x-21 aircraft, Technical Report (NASA,
1964).

25 S. Einav, and S. L. Lee, Particles migration in laminar boundary layer
flow, Int. J. Multiphase Flow 1, 73 (1973).

26 H. Petrie, Morris, A. Bajwa, and D. Vincent, Transition induced by
fixed and freely convecting spherical particles in laminar boundary lay-
ers, Technical Report (Pennsylvania State Univ University Park Ap-
plied Research Lab, 1993).

27 J. Wang, and E. K. Levy, Particle behavior in the turbulent boundary
layer of a dilute gas-particle flow past a flat plate, Exp. Thermal Fluid
Sci. 30, 473 (2006).

28 C. Schmidt, and T. Young, in Impact of freely suspended particles on
laminar boundary layers: Proceedings of 47th AIAA Aerospace Sci-
ences Meeting including The New Horizons Forum and Aerospace Ex-
position, Orlando, 2009.

29 M. Dehghan, and H. Basirat Tabrizi, Effects of coupling on turbulent
gas-particle boundary layer flows at borderline volume fractions using
kinetic theory, J. Heat Mass Transf. Res. 1, 1 (2014).

30 L. M. Portela, P. Cota, and R. V. A. Oliemans, Numerical study of the
near-wall behaviour of particles in turbulent pipe flows, Powder Tech.
125, 149 (2002).

31 V. Loisel, M. Abbas, O. Masbernat, and E. Climent, The effect of
neutrally buoyant finite-size particles on channel flows in the laminar-
turbulent transition regime, Phys. Fluids 25, 123304 (2013).

32 Q. Liu, S. Yazar, and F. Smith, On interaction between freely moving
bodies and fluid in a channel flow, Theor. Appl. Mech. Lett. 13,
100413 (2023).

33 D. W. K. Sin, Fluid-Body Interactions, Dissertation for Doctoral De-
gree (University College London, London, 2017).

34 F. T. Smith, and P. Servini, Channel Flow Past A Near-Wall Body, Q.
J. Mech. Appl. Math. 72, 359 (2019).

流流流体体体 -固固固体体体相相相互互互作作作用用用、、、碰碰碰撞撞撞和和和起起起飞飞飞的的的建建建模模模
Frank T Smith, Ellen M Jolley, Ryan A Palmer

摘要 本文是流体 -固体相互作用机制方面的最新进展综述,主要研究固体物体自身的运动与其周围流体运动之间的相互影响.非

稳态相互作用的数学模型是对两个空间维度和时间尺度的内部通道和外部近壁流的描述. 本文重点描述伴随计算量减少的分析发展

过程. 文章讨论无黏性流中掠过和下沉、物体的起飞、飞离或弹跳,以及黏性效应,特别是黏性和无黏性之间的相互作用和影响.主要

研究结果涉及撞击时间、起飞条件、撞击和飞离之间的边界、主要参数及其范围以及物体形状和质量对物理及力学机制的影响.

https://doi.org/10.1007/s10665-021-10130-6
https://doi.org/10.1007/s10665-017-9925-7
https://doi.org/10.1016/j.apor.2019.02.002
https://doi.org/10.1017/S0956792519000378
https://doi.org/10.1017/jfm.2021.92
https://doi.org/10.1017/jfm.2020.697
https://doi.org/10.1007/s10665-020-10063-6
https://doi.org/10.1017/jfm.2022.207
https://doi.org/10.1098/rspa.2022.0311
https://doi.org/10.1007/s10665-021-10121-7
https://doi.org/10.1017/jfm.2022.93
https://doi.org/10.1098/rspa.2018.0286
https://doi.org/10.1007/s00162-022-00631-0
https://doi.org/10.1016/0301-9322(73)90005-0
https://doi.org/10.1016/j.expthermflusci.2005.09.005
https://doi.org/10.1016/j.expthermflusci.2005.09.005
https://doi.org/10.1016/S0032-5910(01)00501-0
https://doi.org/10.1063/1.4848856
https://doi.org/10.1016/j.taml.2022.100413
https://doi.org/10.1093/qjmam/hbz009
https://doi.org/10.1093/qjmam/hbz009

	On modelling fluid/body interactions, impacts and lift-offs
	Introduction
	Modelling and formulation
	Inviscid model: interactions and impacts
	Impacts in channel flows
	Impacts in external flows

	Skimming and sinking
	Lift-off, fly-away or bouncing of a body
	Viscous effects
	Further discussion and conclusion


