3,881 research outputs found

    Resonant and anti-resonant frequency dependence of the effective parameters of metamaterials

    Full text link
    We present a numerical study of the electromagnetic response of the metamaterial elements that are usedto construct materials with negative refractive index. For an array of split ring resonators (SRR) we find that the resonant behavior of the effective magnetic permeability is accompanied by an anti-resonant behavior of the effective permittivity. In addition, the imaginary parts of the effective permittivity and permeability are opposite in sign. We also observe an identical resonant versus anti-resonant frequency dependence of the effective materials parameters for a periodic array of thin metallic wires with cuts placed periodically along the length of the wire, with roles of the permittivity and permeability reversed from the SRR case. We show in a simple manner that the finite unit cell size is responsible for the anti-resonant behavior

    Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites

    Full text link
    We investigate the possibility of preparing left-handed materials in metallic magnetic granular composites. Based on the effective medium approximation, we show that by incorporating metallic magnetic nanoparticles into an appropriate insulating matrix and controlling the directions of magnetization of metallic magnetic components and their volume fraction, it may be possible to prepare a composite medium of low eddy current loss which is left-handed for electromagnetic waves propagating in some special direction and polarization in a frequency region near the ferromagnetic resonance frequency. This composite may be easier to make on an industrial scale. In addition, its physical properties may be easily tuned by rotating the magnetization locally.Comment: 5 figure

    Epitaxially strained [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and PbTiO3_3 from first principles

    Full text link
    The effect of layer-by-layer heterostructuring and epitaxial strain on lattice instabilities and related ferroelectric properties is investigated from first principles for the [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and pure PbTiO3_3 on a cubic substrate. The results for the superlattice show an enhancement of the stability of the monoclinic r-phase with respect to pure PbTiO3_3. Analysis of the lattice instabilities of the relaxed centrosymmetric reference structure computed within density functional perturbation theory suggests that this results from the presence of two unstable zone-center modes, one confined in the PbTiO3_3 layer and one in the PbZrO3_3 layer, which produce in-plane and normal components of the polarization, respectively. The zero-temperature dielectric response is computed and shown to be enhanced not only near the phase boundaries, but throughout the r-phase. Analysis of the analogous calculation for pure PbTiO3_3 is consistent with this interpretation, and suggests useful approaches to engineering the dielectric properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure

    Nonlinear surface waves in left-handed materials

    Full text link
    We study both linear and nonlinear surface waves localized at the interface separating a left-handed medium (i.e. the medium with both negative dielectric permittivity and negative magnetic permeability) and a conventional (or right-handed) dielectric medium. We demonstrate that the interface can support both TE- and TM-polarized surface waves - surface polaritons, and we study their properties. We describe the intensity-dependent properties of nonlinear surface waves in three different cases, i.e. when both the LH and RH media are nonlinear and when either of the media is nonlinear. In the case when both media are nonlinear, we find two types of nonlinear surface waves, one with the maximum amplitude at the interface, and the other one with two humps. In the case when one medium is nonlinear, only one type of surface wave exists, which has the maximum electric field at the interface, unlike waves in right-handed materials where the surface-wave maximum is usually shifted into a self-focussing nonlinear medium. We discus the possibility of tuning the wave group velocity in both the linear and nonlinear cases, and show that group-velocity dispersion, which leads to pulse broadening, can be balanced by the nonlinearity of the media, so resulting in soliton propagation.Comment: 9 pages, 10 figure

    A concentration phenomenon for semilinear elliptic equations

    Full text link
    For a domain \Omega\subset\dR^N we consider the equation -\Delta u + V(x)u = Q_n(x)\abs{u}^{p-2}u with zero Dirichlet boundary conditions and p(2,2)p\in(2,2^*). Here V0V\ge 0 and QnQ_n are bounded functions that are positive in a region contained in Ω\Omega and negative outside, and such that the sets {Qn>0}\{Q_n>0\} shrink to a point x0Ωx_0\in\Omega as nn\to\infty. We show that if unu_n is a nontrivial solution corresponding to QnQ_n, then the sequence (un)(u_n) concentrates at x0x_0 with respect to the H1H^1 and certain LqL^q-norms. We also show that if the sets {Qn>0}\{Q_n>0\} shrink to two points and unu_n are ground state solutions, then they concentrate at one of these points

    Multiplicity with a Thrust Cut

    Full text link
    We evaluate the multiplicity of hadrons in the e+ee^+e^--annihilation at a given thrust TT in the modified leading-log approximation, including O(αs)O(\sqrt{\alpha_s}) corrections. The calculation is done at a large value of τ=1T\tau =1-T by the use of the factorisation which takes place in the one-particle-inclusive cross section at a given τ\tau. At a small τ\tau, a different type of factorisation takes place, which also enable us to evaluate the multiplicity. Two approaches are compared numerically. Measuring this quantity near τ=1/3\tau =1/3, we can determine the multiplicity ratio between a gluon-jet and a quark-jet.Comment: OCHA-PP-32, LATEX FILE, 21

    Fundamental movement skills and their assessment in primary schools from the perspective of teachers

    Get PDF
    Evidence suggests that children struggle to acquire age-appropriate fundamental movement skills (FMS), despite their importance for facilitating physical activity. This has led to calls for routine school-based screening of children’s FMS. However, there is limited research exploring schools’ capacity to conduct such assessments. This study investigated what factors might affect the adoption and implementation of FMS assessments in primary schools. School staff (n = 853) completed an online questionnaire developed using the Capability, Opportunity, Motivation and Behavior (COM-B) model. A majority reported that knowledge of pupils’ FMS ability would be beneficial (65.3%), and 71.8% would assess FMS if support was provided. Barriers included: Capability–few possessed knowledge of FMS (15%); Opportunity–teachers reported 30–60 minutes as acceptable for assessing a class, a substantially shorter period than current assessments require; Motivation–57.2% stated FMS assessments would increase workload stress. Solutions to these issues are discussed using the COM-B theoretical framework.</p

    Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory

    Get PDF
    We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem and the problem of time in reparametrization invariant theories as for example in canonical quantum gravity. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem.Comment: 23 pages, Few changes and added references in v

    Valence band photoemission from the GaN(0001) surface

    Full text link
    A detailed investigation by one-step photoemission calculations of the GaN(0001)-(1x1) surface in comparison with recent experiments is presented in order to clarify its structural properties and electronic structure. The discussion of normal and off-normal spectra reveals through the identified surface states clear fingerprints for the applicability of a surface model proposed by Smith et al. Especially the predicted metallic bonds are confirmed. In the context of direct transitions the calculated spectra allow to determine the valence band width and to argue in favor of one of two theoretical bulk band structures. Furthermore a commonly used experimental method to fix the valence band maximum is critically tested.Comment: 8 pages, 11 eps files, submitted to PR

    Perfect state distinguishability and computational speedups with postselected closed timelike curves

    Get PDF
    Bennett and Schumacher's postselected quantum teleportation is a model of closed timelike curves (CTCs) that leads to results physically different from Deutsch's model. We show that even a single qubit passing through a postselected CTC (P-CTC) is sufficient to do any postselected quantum measurement, and we discuss an important difference between "Deutschian" CTCs (D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the present outcome of an experiment. Then, based on a suggestion of Bennett and Smith, we explicitly show how a party assisted by P-CTCs can distinguish a set of linearly independent quantum states, and we prove that it is not possible for such a party to distinguish a set of linearly dependent states. The power of P-CTCs is thus weaker than that of D-CTCs because the Holevo bound still applies to circuits using them regardless of their ability to conspire in violating the uncertainty principle. We then discuss how different notions of a quantum mixture that are indistinguishable in linear quantum mechanics lead to dramatically differing conclusions in a nonlinear quantum mechanics involving P-CTCs. Finally, we give explicit circuit constructions that can efficiently factor integers, efficiently solve any decision problem in the intersection of NP and coNP, and probabilistically solve any decision problem in NP. These circuits accomplish these tasks with just one qubit traveling back in time, and they exploit the ability of postselected closed timelike curves to create grandfather paradoxes for invalid answers.Comment: 15 pages, 4 figures; Foundations of Physics (2011
    corecore